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1 Introduction
Advances in Internet technologies have resulted in an unprecedented growth in demand for data. In partic-
ular, demand in the mobile Internet sector is doubling every year [25]. Given the limited wireless spectrum
availability, the rate of growth in the supply of wireless capacity (per dollar of investment) is unlikely to
match the rate of growth in demand in the long run. Internet Service Providers (ISPs) are therefore turn-
ing to new pricing and penalty schemes in an effort to manage the demand on their network, while also
matching their prices to cost. But changes in pricing and accounting mechanisms, if not done carefully,
can have significant consequences for the entire network ecosystem. Multiple stakeholders in this ecosys-
tem, including operators, consumers, regulators, content providers, hardware and software developers, and
architects of network technologies, have all been tackling these issues of charging and allocating limited net-
work resources. Even back in 1974, while writing about the future challenges of computer communication
networks, Leonard Kleinrock [71] noted:

[H]ow does one introduce an equitable charging and accounting scheme in such a mixed net-
work system? In fact, the general question of accounting, privacy, security and resource control
and allocation are really unsolved questions which require a sophisticated set of tools.

While much progress has been made on developing technical solutions, methods, and tools to address these
issues, continued growth of the network ecosystem requires developing a better understanding of the under-
lying economic and policy perspectives. The broader area of network economics, which deals with the in-
terplay between technological and economic factors of networks, is therefore receiving more attention from
engineers and researchers today. Economic factors like pricing, costs, incentive mechanisms and externali-
ties1 affect the adoption outcomes (i.e., success or failure of network technologies) and stability [62,65,110],
influence network design choices [108,109], and impact service innovation [138]. Conversely, technological
limitations and regulatory constraints determine which kind of economic models are most suited to analyze
a particular network scenario. This interplay between technology, economics, and regulatory issues is per-
haps most easily observed in the case of broadband access pricing, for example, in evaluating the merits of
“flat-rate” versus “usage-based” pricing or the neutrality of “volume-based” versus “app-based” accounting,
etc. In this chapter we discuss the current trends in access pricing among service operators, factors that af-
fect these decisions, analytical models and related considerations. In particular, we observe that Smart Data

1Network externality is the notion that the cost or value of being a part of a network for an individual user depends on the number
of other users using that network. For example, the value of a network grows as more users adopt and positive externalities are realized
from being able to communicate with other users on the network. Similarly, when many users start to content for limited resources of
a bottleneck link of a network, negative externalities from congestion diminish a user’s utility from accessing the network.
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Pricing2 (SDP) is likely to emerge as an effective way to cope with increased network congestion. These
smarter ways to count and treat data traffic illustrate three shifts in the principles of network management:

1. Pricing for end-user Quality of experience (QoE) and not just byte-counting: Simple policies like
usage-based pricing (byte-counting) (a) force users to pay the same amount per unit of bandwidth
consumed irrespective of the congestion levels on the network,3 and (b) fail to account for the fact that
different applications have different bandwidth requirements to attain a certain QoE for the user. SDP
should try to match the cost of delivering application-specific desired QoE requirements of the user to
the ISP’s congestion cost at the time of delivery.

2. Application layer control to impact physical layer resource management: Today’s smart devices with
their easy to use graphical user interfaces can potentially enable consumer-specified choice for access
quality. Whether done manually or in an automated mode, users’ specifications of their willingness
to pay for their desired QoE of different applications can be taken in as inputs at the APP layer and
used to control PHY layer resource allocation and media selection (e.g., WiFi offloading versus 3G).
But enabling this requires consumer trials to understand how to design incentives and create interfaces
that can be effective in modifying end-user behavior.

3. Incorporating edge devices as a part of network management system: Instead of managing traffic
only in the network core, SDP explores ways to make edge devices (e.g., smart mobile devices and
customer-premise equipments like gateways) a part of the network resource allocation and manage-
ment system. For example, instead of throttling traffic in the network core using the policy charging
and rules function (PCRF), the edge devices (e.g., home gateways) themselves could locally regulate
demand based on a user’s budget, QoE requirements, and network load or available prices. Such
measures to push control from the network core out to the end-users, while preserving the end-to-end
principles of the Internet, have been gaining attention among networking research groups [9].

But before delving deeper into pricing ideas, let us pause to address some common misconceptions often
encountered in public discourse. First, many believe that the Internet’s development cost was borne by the
United States Government, and hence that taxpayers have already paid for it. In reality, by 1994 the National
Science Foundation supported less than 10% of the Internet and by 1996 huge commercial investments were
being made worldwide [85].

Second, users often do not realize that the Internet is not free [21, 85] and think its cost structure is the
same as that of information goods. In contrast to information goods, which tend to have zero marginal costs,4

Internet operators incur considerable network management operation and billing costs. MacKie-Mason and
Varian [81] have shown that while the marginal cost of some Internet traffic can be zero because of statistical
multiplexing, congestion costs can be quite significant. In regard to delivery of bits, it is worthwhile to note
that there are some important factors at play:

(a) There is a large and growing variance in the QoE requirements of the different types of applications that
consumers are using today, and

2SDP is the broad set of ideas and principles that goes beyond the traditional flat-rate or byte-counting models and instead considers
pricing as a network management solution. See http://www.smartdatapricing.org.

3In 1997, David Clark wrote [27] that “The fundamental problem with simple usage fees is that they impose usage costs on users
regardless of whether the network is congested or not.”

4Marginal cost is the change in the total cost that arises when the quantity produced changes by one unit, e.g., the cost of adding
one more unit of bandwidth.



(b) The network operator’s cost of delivery per bit for a given QoE level also has significant variance,
ranging from essentially zero marginal cost in uncongested times to very high in congested times.

(c) There is also a variance in user’s willingness to pay for different types of traffic and QoE levels.

So why not match the right pairs? Most SDP ideas aim to do exactly that, i.e., match the operator’s cost
of delivering bits to the consumer’s QoE needs for different application types at the amount they are willing
to spend.

Third, there is a popular misconception that network costs are high because billing costs account for
50% of telephony costs. Although true for running costs, it is only 4-6% when depreciation of sunk costs
is added [9]. Another important cost for wireless operators today is the cost of acquiring new spectrum to
support the growing bandwidth needs of the customers. However, spectrum is limited and expensive, and
even auction-based spectrum reallocation schemes are projected to fall short of the demand for spectrum.

Fourth, the belief that better technologies like 4G and offloading mechanisms will solve the problems
is already being questioned – “The reasons are two-fold: The amount of spectrum made available to U.S.
wireless companies is limited, but the carriers have also been sluggish in buying up enough backhaul to
support their capacity requirements. There is only so much data that can be crammed into wireless spectrum
– and only so much spectrum available to wireless networks. Thanks to rising mobile data demands, a
current wireless spectrum surplus of 225 MHz will become a deficit of 275 MHz by 2014, according to the
FCC [44].”

Fifth, users fear that changes in pricing policy will increase their access fees. This need not always be the
case, as one can design incentive mechanisms that reward good behavior (e.g., price discounts in off-peak
hours to incentivize shifting of usage demand from peak times). In other words, smarter pricing mechanisms
can increase consumer choices by empowering users to take better control of how they spend their monthly
budget. For example, under time-dependent usage-based pricing [48, 113], users have better control over
their monthly bills by choosing not only how much they want to consume, but also when they do so). Smart
data pricing also has to be smart in its implementation and in its user interface design, with careful study
of user psychology and human-computer interaction aspects, as we will illustrate in later sections and case
studies.

Lastly, we also need to remember that pricing is related to the market competition and user population
density. For the interested reader, an overview of access fees in different parts of the world is provided in
Section A.

The following questions provide a useful way to think about SDP:

(I) Why do we need SDP? Isn’t network pricing an untouchable legacy?
Section 2 provides an overview of the driving factors behind network congestion, and the challenges
that it poses to various stakeholders of the network ecosystem are discussed in Section 3. We also
discuss the rapid evolution in pricing among network operators and highlight in Section 4 how Smart
Data Pricing ideas will be useful in finding solutions that can work in today’s networks.

(II) Haven’t other fields already used pricing innovations? What are the key SDP ideas relevant to com-
munication networks?
We provide an overview of Internet pricing ideas in the existing literature in Section 5, including
some pricing plans from the electricity and transportation industries that can be applied to broadband
pricing. Section 6 provides an overview of a few examples and analytical models of known pricing
mechanisms to illustrate key economic concepts relevant to the SDP literature. We also highlight
many crucial differences between SDP in communication or data networks and pricing innovations in
other industries.



(III) Isn’t SDP too complex to implement in the real world?
Section 9 provides a case study of a field trial of “day-ahead time-dependent pricing” and discusses
the model, system design, and user interface design considerations for realizing this plan. It serves to
demonstrate both the feasibility of creating such SDP plans for real deployment while also pointing
out the design issues that should be kept in mind. The discussion highlights the end-to-end nature
of an SDP deployment, which requires developing pricing algorithms, understanding user psychol-
ogy, designing an effective interface for communicating those prices to users, and implementing an
effective system to communicate between the users and ISPs.

(IV) What are the outstanding problems in enabling SDP for the Internet?
SDP is an active area of research in the network economics community and a set of 20 questions and
future directions are provided in Section 10 for researchers and graduate students to explore. Many of
these research questions have been discussed at various industry-academia forums and workshops on
SDP [99, 107].

2 Driving Factors of Network Congestion
With mobile devices becoming smarter, smaller, and ubiquitous, consumers are embracing the technology
and driving up the demand for mobile data. According to Cisco’s VNI [26], in 2012, global mobile data
traffic grew more than 70 percent year over year, to 855 petabytes a month. The growth rate varied by
regions, with 44% growth in Western Europe, and about 101% in the Middle East and Africa and a 95%
growth rate in Asia Pacific. This section identifies some of the key factors that are expected to drive this
growth in demand for mobile data (ref. Figure 1).
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Figure 1: Factors driving the demand for mobile data.

Cloud Services and M2M Applications: Cloud-based services that synchronize data across multiple
mobile devices, such as iCloud, Dropbox, and Amazons Cloud Drive, can be a significant factor in traffic
growth for ISPs [90]. Similarly, machine-to-machine (M2M) applications that generate data intermittently
(e.g., sensors and actuators, smart meters) or continuously (e.g., video surveillance) often load the network
with large signaling overhead [36]. However, these traffic types also have some intrinsic time elasticities
that create opportunities for intelligently shifting them to low-congestion times through pricing incentives.

Mobile Videos: Video has also been a major contributor to mobile data traffic growth, accounting for 51
percent of global mobile data traffic at the end of 2012. It is expected to account for 66 percent of global
mobile data traffic by 2017 [26]. A study by Gartner [129] states that the worldwide mobile video market
had 429 million mobile video users in 2011, projected to grow exponentially to 2.4 billion users by 2016.
Smartphones and tablet sales will contribute 440 million new mobile video users during the forecast period.
The report also forecasts that the worldwide share of mobile video connections on 3G/4G will increase from



18% in 2011 to 43% in 2015 [29]. These growth rates are being further fueled by mobile video content
delivery via mobile-optimized websites and video advertisements.

Capacity-Hungry Applications: The popularity of handheld devices has led to rapid growth in the de-
velopment of other bandwidth-hungry applications for social networking, music, personalized online maga-
zines, etc. in addition to file downloads and video streaming. Virgin Media Business reports that the average
smartphone software uses 10.7 MB per hour, with the highest-usage app, Tap Zoo, consuming up to 115
MB/hour. In the current ecosystem, app developers do not have enough incentives to account for network
conditions, and consequently many smartphone apps are not optimized for bandwidth consumption.

Bandwidth-Hungry Devices: The widespread adoption of handheld devices, equipped with powerful
processors, high-resolution cameras, and larger displays, has made it convenient for users to stream high-
quality videos and exchange large volumes of data. Data from laptops with 3G dongles and netbooks with
wireless high-speed data access contributes the most to wireless network congestion [36]. As for smart-
phones, Cisco projects that the average monthly data usage will rise from 150 MB in 2011 to 2.6 GB in
2016 [26]. New features like Siri on the iPhone 4S, which has doubled Apple users’ data consumption, are
driving this growth [10].

The key takeaways from the above discussion of the various factors contributing to network congestion
are:

• Different types of applications and services have different levels of time elasticity of demand (e.g.,
cloud backup versus financial applications).

• There is a great variance in the rate of growth of different types of applications (e.g., demand for
mobile videos is growing fast).

• Different applications consume bandwidth at different rates and have a large variance in QoE require-
ments (e.g., many apps are not optimized for bandwidth while some well-designed apps can adapt to
available network QoS).

• There is a growing variance in the bandwidth requirements of different smart devices (e.g., iPad versus
iPhone versus feature phones).

These factors contribute to the need for smarter data plans that can account for the variances across users’
QoE needs, time elasticity of demand, application traffic characteristics and their willingness to pay for the
service.

Before delving deeper into SDP’s promise in addressing congestion issues [99], in the next section we
first explore how these trends are impacting the various stakeholders of the network ecosystem, i.e., network
operators, consumers, app developers, and content providers.

3 Impact on the Network Ecosystem

3.1 ISPs’ Traffic Growth
By 2016, ISPs are expected to carry 18.1 petabytes per month in managed IP traffic.5 But this growth is
causing concern among ISPs, as seen during Comcast’s initiative to cap their wired network users to 300 GB
per month [30]. Even back in 2008, Comcast made headlines with their decision (since reversed) to throttle

5Cisco’s definition of “managed IP” includes traffic from both corporate IP wide area networks and IP transport of television and
video-on-demand.



Netflix as a way to curb network congestion [69]. Video streaming from services like Netflix, Youtube, and
Hulu, are a major contributor to wired network traffic. In fact Cisco predicts that by 2016 fixed IPs will
generate 40.5 petabytes of Internet video per month [25].

Rural local exchange carriers (RLECs) are also facing congestion in their wired networks due to the
persistence of the middle-mile problem for RLECs. Although the cost of middle mile bandwidth has declined
over the years (because of an increase in the DSL demand needed to fill the middle mile), the bandwidth
requirements of home users have increased quite sharply [43]. Still, the average speed provided to rural
customers today fails to meet the Federal Communications Commission’s (FCC) broadband target rate of
4 Mbps downstream speed for home users. The cost of middle mile upgrades to meet this target speed
will be substantial and is a barrier to digital expansion in the rural areas [43]. Research on access pricing
as a mechanism to bring down middle mile investment costs by reducing the RLEC’s peak capacity and
over-provisioning needs can therefore also help in bridging the digital divide.

3.2 Consumers’ Cost Increase
Network operators have begun to pass some of their network costs to consumers through various penalty
mechanisms (e.g., overage fees) and increasing the cost of Internet subscriptions. For instance, when Veri-
zon announced in July 2012 that they were offering shared data plans for all new consumers and discontin-
uing their old plans, many consumers ended up with higher monthly bills [17]. To remain within monthly
data caps, consumers are increasingly relying on usage-tracking and data compression apps (e.g., Onavo,
WatchDogPro, DataWiz) [101] that help to avoid overage fees. Such trends are common in many parts
of the world; in South Africa, for instance, consumers use ISP-provided usage-tracking tools [19] to stay
within the data caps. Similarly in the U.S., research on in-home Internet usage has shown that many users
are concerned about their wired Internet bills and would welcome applications for tracking their data usage
and controlling bandwidth rates on in-home wired networks [21, 77]. Empowering users to monitor their
data usage and control their spending has led to a new area of research that considers economic incentives
and human-computer interaction (HCI) aspects in a holistic manner [112].

3.3 Application Developers’ Perspective
Introducing pricing schemes that create a feedback-control loop between the client side device and network
backend devices requires new mobile applications that will support such functionalities. However, most
mobile platforms in use today (e.g., iOS, Android, and Windows) have different levels of platform openness.
The iOS platform for iPhones and iPads has several restrictions: it strictly specifies what kind of applications
can run in the background and further prevents any access other than the standard application programming
interfaces (APIs). For example, obtaining an individual application’s usage and running a pricing app in
the background are prohibited. By contrast, the Android and Windows platforms allow these features, e.g.,
introducing an API to report individual applications’ usage to third-party apps.

An interesting direction to overcome these limitations is to initiate the creation of open APIs between
user devices and an ISP’s billing systems. For example, this can allow the user devices connected to the ISP’s
network to easily fetch current pricing, billing, and usage information from the network operator, while also
allowing the ISP to easily test and deploy new pricing schemes through the standardized interface. Such an
API would foster innovations in pricing for both consumers and providers.

Additionally, new pricing plans create an opportunity for developers to optimize their app according to
changing pricing conditions. For instance, some apps that require preloading content, such as magazine
apps, might time these preloading downloads so as to coincide with lower-price times, thus saving users



money [112]. This sensitivity to price might even improve users’ experience, as lower prices generally
occur during times of lower congestion and higher throughput. Shifting usage so as to save money could be
especially significant for video apps, as these tend to have higher usage volumes.6 Such adaptation would
also require an API allowing apps to access the network prices in real time.

3.4 Software/Hardware Limitations
Wireless ISPs’ current billing systems (including 2G, 3G, and 4G) heavily depend on the RADIUS (Remote
Authentication Dial In User Service) protocol, which supports centralized Authentication, Authorization,
and Accounting (AAA) for users or devices to use a network service [102]. In particular, RADIUS account-
ing [120] is well suited to support usage-based pricing, since it can keep track of the usage of individual
sessions belonging to each user. Yet individual session lengths are often quite long, making it difficult to
retrieve usage at the smaller timescales needed for dynamic pricing.

RADIUS account sessions are initiated by the Network Access Server (NAS) when a user first attempts
to connect to the network: the NAS sends a user’s login credentials to the RADIUS server, which compares
the credentials to a secure database. The RADIUS server then authenticates the session and authorizes
it to access different functionalities on the network. Once this session has been initiated, a start record
is created in the RADIUS logs. Interim accounting request messages can be sent periodically to update
the usage information. When the end user terminates the connection, the NAS sends a stop message to
the RADIUS server and a stop record is created that stores the total usage volume of that session. Since
these RADIUS sessions can have very long durations, up to several hours, RADIUS logs cannot be used
to calculate usage at smaller timescales.7 Moreover, the RADIUS log has no information on the type of
application(s) corresponding to each session. While one session may encompass usage from multiple apps
used in parallel, in some cases individual apps initiate new sessions; thus, the concept of a “session” cannot
be definitively tied to an individual app [120].

Changing the RADIUS protocol to deliver usage estimates at a smaller time granularity would require
significant overhead in both control signaling and storing RADIUS records. A perhaps easier alternative
would be to record usage at the network edge, i.e., on client devices–such functionality already exists,
but this approach would be vulnerable to users’ deliberately falsifying the usage recorded on their device.
Similarly, RADIUS logs do not contain any information on per-application usage, but client devices can
easily obtain this information. Thus, application-specific pricing could also benefit from usage tracking
functionalities on the end user devices. Some verification procedures could be implemented to guard against
user tampering, e.g., comparing the total monthly usage measured by RADIUS servers and client devices,
but would require careful design and might not be completely secure.

3.5 Content Delivery Issues
Any change in access pricing has to be studied in the larger context of Internet’s net-neutrality and openness.
These discussions center around the issues of (a) who should pay the price of congestion (i.e., content
providers or consumers) and (b) how such pricing schemes should be implemented (i.e., time-of-day, app-
based bundles, etc.). The major concern with policy change is the possibility of paid prioritization of certain
content providers’ traffic, price discrimination across consumers, and promoting anti-competitive behavior in

6Some video apps cannot shift usage due to legal restrictions on caching content. However, many apps like YouTube own the rights
to their video content.

7Note that interim update messages are sent periodically when a session joins the system, and hence, the time interval for interim
updates should be kept low to support sending time-of-day usage, which may introduce significant control overhead.



bundled offerings of access plus content. While such developments can indeed hurt the network ecosystem,
one aspect that should receive more attention is the threat to data usage even under simple usage-based
or tiered data plans. As Internet users become more cautious about their data consumption [121], content
providers are providing new options to downgrade the quality of experience (QoE) for their users to help
them save money. For instance, Netflix has started allowing “users to dial down the quality of streaming
videos to avoid hitting bandwidth caps” [89]. Additionally, it is “giving its iPhone customers the option of
turning off cellular access to Netflix completely and instead relying on old-fashioned Wi-Fi to deliver their
movies and TV shows” [39]. Thus, the ecosystem today is being driven by an attitude of penalizing demand
and lessening consumption through content quality degradation.

Network researchers are investigating these issues broadly along two lines of work: (i) opportunistic
content caching, forwarding, and scheduling, and (ii) budget-aware online video adaptation. Opportunistic
content delivery involves the smart utilization of unused resources to deliver higher QoE; for example, to
alleviate the high cost of bulk data transfers, Marcon et al. [84] proposed utilizing excess bandwidth (e.g.,
at times of low network traffic) to transmit low-priority data. Since this data transmission does not require
additional investment from ISPs, they can offer this service at a discount, relieving data transfer costs for
clients. While utilizing excess bandwidth introduces some technical issues (e.g., the potential for resource
fluctuations), a prototype implementation has shown that they are not insurmountable [73]. The second
stream of works on online video adaptation systems, such as Quota Aware Video Adaptation (QAVA) [18],
have focused on sustaining a user’s QoE over time by predicting her usage behavior and leveraging the
compressibility of videos to keep the user within the available data quota or her monthly budget. The basic
idea here is that the video quality can be degraded by non-noticeable amounts from the beginning of a billing
cycle based on the user’s predicted usage so as to avoid a sudden drop in QoE due to throttling or overage
penalties when the monthly quota is exceeded. This relates to the SDP theme of enabling self-censorship of
usage and QoE on the client side device through user-specified choices.

3.6 Regulatory Concerns
Pricing in data networks has remained a politically charged issue, particularly for pricing mechanisms that
could potentially create incentives for price discrimination, non-neutrality, and other anti-competitive be-
havior through app-based pricing or bundling of access and content. Academics have already cautioned that
the ongoing debate on network neutrality in the U.S. often overlooks service providers’ need for flexibility
in exploring different pricing regimes [137]:

Restricting network providers’ ability to experiment with different protocols may also reduce
innovation by foreclosing applications and content that depend on a different network architec-
ture and by dampening the price signals needed to stimulate investment in new applications and
content.

But faced with the growing problem of network congestion, there has been a monumental shift in the
regulatory perspective in the US and other parts of the world. This sentiment was highlighted in FCC Chair-
man J. Genachowski’s 1 December 2010 statement [106], which recognizes “the importance of business
innovation to promote network investment and efficient use of networks, including measures to match price
to cost.”
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Figure 2: Broadband pricing plans offered by major U.S. ISPs, 2008 - 2013.

4 Smart Data Pricing
Broadband access pricing and demand control practices have rapidly evolved among U.S. ISPs since 2008,
as seen in Figure 2. Over the past few years, ISPs around the world have started to offer innovative pric-
ing plans, including usage-based and app-based pricing to tackle the problem of network congestion [114].
Smart Data Pricing (SDP) [107] is an umbrella term for a suite of pricing and policy practices that have
been proposed in the past or are being explored as access pricing options by operators instead of the tra-
ditional flat-rate model. Such SDP models can include any or of the following mechanisms or a combina-
tion, which will be discussed later in the chapter: (a) Usage-based pricing/metering/throttling/capping, (b)
Time/location/congestion-dependent pricing, (c) App based pricing/sponsored access, (d) Paris metro pric-
ing, (e) Quota-aware content distribution, (f) Reverse billing or Sponsored Content. SDP does not even need
to be an explicit pricing mechanism; it can be another form of innovative congestion management like WiFi
offloading or “fair-throttling”8.

The basic ideas of congestion pricing have received much attention as a research topic both in computer
networks and information systems literature, and are once again getting a fresh look from academics in
recent years. Given the change in the economic and regulatory environment of Internet pricing, it is likely
that some of the ideas will be realized in future data plans. However, research in the design of such smart
data pricing plans should account for some new factors: (i) the growth in traffic with high time-elasticity
of demand (e.g., downloads, P2P, cloud backup, M2M) and the ability to schedule such traffic to a less
congested time without user-intervention, (ii) revisiting the issue of dividing the elements of a congestion
control-feedback loop between the network backend and the smart end-user devices, (iii) development of
new system architectures to deploy these pricing ideas and demonstration of their potential benefits through
field trials. In other words, it requires understanding both the economic theory of pricing models as well as
the systems engineering and human-computer interaction aspects of realizing such data plans. These require

8Fair throttling involves accounting for user’s usage history of contributing to congestion in determining what share of available
bandwidth the user should receive in a congested time.
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a multi-disciplinary approach in SDP research that bridges theory, systems, and user trials by drawing on
economic theory, network engineering and user behavioral studies in a collaborative environment, as shown
in Figure 3.

5 A Review of Smart Data Pricing
Smart data pricing encompasses a wide variety of different pricing algorithms and proposals. In this section,
we briefly discuss some of these ideas, following the taxonomy given in Figure 4. We include a brief
overview of related pricing plans in the electricity and transportation industries, which can help yield insights
into the feasibility of various forms of SDP for data, as well as ideas for new pricing plans. Other, more
thorough reviews may be found in [33, 115, 118].

A primary goal of SDP is to create the right incentives (or price points) for users to modify their usage
behavior so as to help ISPs with better resource allocation and utilization. But creating these incentives
requires ISPs to account for users’ responses to the prices offered. Of particular relevance is the timescale
associated with the pricing mechanism – do the prices continually change as the network load changes?
If so, how frequently and by how much? How to balance the trade-offs between users’ reluctance to real
time dynamic pricing and the inability of static pricing to exploit the time elasticity of demand of different
applications in congested times? How to balance the trade-offs between the users’ need for transparency and
control over her usage and the need for automation in dynamic pricing scenarios?

Static pricing plans are those that change prices on a relatively longer timescale, e.g., months or years:
the offered prices do not vary with immediate changes in the network congestion level. The popularity of
these plans arises from the certainty they provide to a user’s expected monthly bill. For instance, tiered data
plans with pre-specified rates are prevalent in the United States, and several European and Asian ISPs offer
usage-based pricing in which users are charged in proportion to their usage volume. But such usage-based
pricing leaves a timescale mismatch: ISP revenue is based on monthly usage, but peak-hour congestion
dominates its cost structure (e.g., network provisioning costs increase with the peak-hour traffic). Another
well-known pricing plan is time-of-day (ToD) pricing, in which users are charged higher prices during certain
“peak” hours of the day. But even with ToD pricing, the hours deemed as “peak” are fixed, which results in
two challenges. First, traffic peaks arise in different parts of the network at different times, which can be hard
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Figure 4: Examples of broadband pricing plans proposed in the research literature.

to predict in advance and could end up creating two peaks during the day–one during peak periods, for traffic
that cannot wait for several hours for lower-price periods, and another peak during discounted “off-peak”
periods for time-insensitive traffic. Such patterns have been observed in dynamic pricing for voice calls in
operational networks [125]. We discuss several of these existing static pricing plans and proposals in greater
detail in Section 5.1.

Dynamic pricing takes the ToD idea further in that it does not pre-classify peak and off-peak periods,
instead adjusting prices at a finer timescale or by location in response to the network congestion. However,
prices that vary depending on the current network load can be sometimes inconvenient for users. Hence,
dynamic pricing variants for SDP, such as automated “smart market” [80, 88], raffle-based pricing [78], and
day-ahead pricing [48], have been proposed to guarantee the prices a day in advance to give users some
certainty about the future prices on offer. Each day, new prices are computed for different times (e.g.,
hours) of the next day, based on predicted congestion levels. A detailed discussion on these dynamic pricing
proposals will be provided in Section 5.2.

5.1 Static Pricing
Due to the fixed nature of their prices, static data plans do not generally allow ISPs to adapt to real-time
congestion conditions. In particular, the ISP cannot prevent or alleviate network congestion at peak times
by manipulating the prices. On the other hand, static pricing tends to be more acceptable to users, as it
offers more certainty and is simpler than dynamically changing prices. Indeed, the most basic form of
static pricing, flat pricing, is also the most simple for users, though it does not impose any sort of usage
incentives [116]. Some other important examples of static pricing include the following:



Usage-based: In its purest form, usage-based pricing charges users in proportion to the amount of data
that they consume, without regard to the type of data (e.g., application) or time of consumption. The principal
advantage of such a pricing plan lies in its relative simplicity: it imposes a monetary penalty on heavy (i.e.,
high-usage) users to reduce congestion [50, 76], but also penalizes users even when the network is lightly
loaded. Moreover, usage-based pricing requires users to keep close track of their usage in order to determine
how much they have spent on data [132].

Tiered: A more common variant of pure usage-based pricing is tiered pricing, in which users pay a fixed
amount of money for a monthly data cap (e.g., $30 for 3GB). This fixed fee covers usage up to the cap,
after which users may pay another fixed fee to increase the cap by a discrete amount, e.g., $10 per extra GB.
Thus, tiered or capped pricing can be viewed as a discretization of usage-based pricing. Many ISPs have
adopted such a pricing plan or another variant in which the data cap is shared across several devices (i.e., a
shared data plan). Like usage-based pricing, tiered pricing is simple for users to understand and penalizes
heavy usage.

Quality of Service (QoS) classes: Some static pricing plans offer multiple traffic classes with different
qualities of service (QoS). A simple differentiated pricing plan is Paris metro pricing (PMP), which is named
after an actual pricing practice on the Paris metro in the 1900s [92]. In Paris metro pricing, the ISP separates
data traffic into different logical traffic classes and charges different prices for logically separate traffic
classes (i.e., each class is identical to the others in their treatment of data packets). Only users willing to pay
a higher price will adopt this traffic class, which leads to a better QoS due to fewer users. But one of the key
issue of academic debate related to PMP has been its viability, namely, whether it is a mechanism to increase
the profits for service providers, or whether it achieves higher social welfare. As pointed out in [16], the
conclusions of this debate depend on how users react to the congestion externality of the underlying system.
Other researchers have investigated more direct forms of QoS pricing, in which users can indicate their
desired QoS in their packets and are charged a higher per-byte fee for higher QoS [9, 28, 83].

Another form of QoS pricing is token pricing, in which users receive tokens at a fixed rate (e.g., 1 per
minute) [74]. Users can then spend these tokens to send some of their traffic at a premium QoS; users can
choose the timing of these premium sessions, e.g., to coincide with their individual priorities and preferences.

Negotiated contracts: In these types of pricing schemes, users pre-negotiate contracts with the ISP
regarding the price of sending traffic over the network. The main research question for such contracts is then
characterizing this user-ISP interaction and both parties’ optimal decisions. For instance, in reservation-
based pricing, users specify a monthly budget for data; the ISP can then accept or reject users’ connections
based on users’ remaining budget and the real-time network congestion [34, 94, 95].

In expected capacity pricing, Clark proposed a mechanism in which users similarly negotiate a price in
advance based on an “expected” quality of service (e.g., file transfer time), so that at congested times the ISP
can freely allocate network resources based on whether a given packet lies “within” a user’s purchased traffic
profile [27]. The goal of this pricing scheme is to “provide additional explicit mechanisms to allow users to
specify different service needs, with the presumption that they will be differentially priced [27].” Expected
capacity pricing allows users to explicitly specify their service expectation (e.g., file transfer time), while
accounting for differences in applications’ data volume and delay tolerance. The idea is that by entering
into profile contracts for expected capacity with the operator, different users should receive different shares
of network resources when the network gets congested [118]. One specific proposal to realize this service
involved traffic flagging (i.e., each packet is marked as being in or out of the user’s purchased profile,
irrespective of network congestion level) by a traffic meter at access points where the user’s traffic enters the
network. This is followed by congestion management at the switches and routers where packets marked as
out are preferentially dropped during congested periods, but are treated in an equal best-effort manner at all
other times. The expected capacity is thus not a capacity guarantee from the network to the user, but rather



a notion of the capacity that a user expects to be available and a set of mechanisms that allow the user to
obtain a different share of the resource at congested times.

An ISP offers similar contracts under cumulus pricing, but users can re-negotiate the price after passing
“cumulus” usage points [52]. Cumulus pricing consist of three stages: specification, monitoring, and nego-
tiation. A service provider initially offers a flat-rate contract to the user for a specified period based on the
user’s estimate of resource requirements. During this time the provider monitors the user’s actual usage and
provides periodic feedback to the user (by reporting on “cumulus points” accumulated from their usage) to
indicate whether the user has exceeded the specified resource requirements. Once the cumulative score of a
user exceeds a predefined threshold, the contract is renegotiated.

App-based and sponsored content: Different applications consume different amounts of data traffic
(e.g., streaming video consumes much more data than retrieving emails). Some researchers have thus pro-
posed app-based pricing, in which users are charged different rates for different apps [38]. Such pricing
plans also include “zero-rated” apps, whose traffic is free for the user. A variant of such pricing schemes is
“sponsored content”, in which a third-party (advertiser, content provider, or the ISP itself) “sponsors” some
part of the traffic in return for accessing specific content or using data at less congested times.

App-based plans have been offered in Europe, largely on a promotional basis. However, app-based
pricing presents technical challenges for ISPs– ISPs need to identify and track how much data each user
consumes on specific applications, which may raise privacy concerns. Moreover, some apps open links in
separate apps (e.g., links in Flipboard may open a separate Internet browser), creating confusion among users
as to the app to which some traffic belongs, and whether this traffic counts towards the sponsored volume
or not. Even in academia, sponsored content research is relatively sparse, though a few initial models have
been developed [5, 49].

Time-of-day (ToD): ToD pricing charges users different usage-based rates at different times of the day
(e.g., peak and off-peak hours) [94]. The free nighttime minutes offered for voice calls by most US ISPs
before 2013 are one simple form of ToD pricing. However, as the peak times and rates are fixed in advance,
ToD pricing can end up creating two peaks, one during the “peak” period and one in the “off-peak” period;
indeed, this phenomenon was observed in Africa when MTN Uganda offered discounted prices for voice
calls made at night.

Some ISPs offer two-period ToD pricing plans with different charging rates at day and night times. For
example, BSNL in India offers unlimited night time (2-8 am) downloads on monthly data plans of Rs 500
($10) and above. Other variations of ToD pricing are offered elsewhere; for instance, the European operator
Orange has a “Dolphin Plan” for £15 ($23.50 USD) per month that allows unlimited web access during
a “happy hour” corresponding to users’ morning commute (8-9 am), lunch break (12-1 pm), late afternoon
break (4-5 pm), or late night (10-11 pm). The underlying idea is to allow consumers to self-select themselves
into “time-buckets” with QoE guarantees, with the hope of exploiting the variance in consumers’ time-of-day
preference to spread out demand more evenly over the day.

5.2 Dynamic Pricing
Dynamic pricing allows prices to be changed in (near) real-time, which unlike static pricing allows an ISP
to adjust its prices in response to observed network congestion. However, in doing so the ISP significantly
complicates its pricing, making it much harder for users to understand. Thus, implementing and offering
dynamic pricing plans requires ISPs to account for human factors that can make real-time changes in price
more amenable to users. Some of the proposed dynamic pricing plans are discussed below:

Real-time congestion: If ISPs can monitor their network for real-time signs of congestion, they can
increase prices when congestion is observed, and decrease them when the traffic load is relatively light. Thus,



there is a feedback loop between ISPs offering prices and users correspondingly adjusting their usage [41,96].
This responsive pricing sets prices so as to keep user demand under a certain level; if an ISP further chooses
the prices so as to optimize a proportional fairness criterion on the amount of bandwidth allocated to different
users, we obtain proportional fairness pricing [32, 42, 68]. Many variants of responsive pricing have been
proposed in the literature, principally as a congestion control mechanism; in practice, it would be impractical
for users to manually respond to the prices offered for each Internet connection. Hence, automation of client
devices (or agents) to intelligently adapt their data consumption will be necessary to realize such real-time
pricing. But recent HCI studies [20, 112] have revealed complex patterns of household politics and user
opinion regarding such decision-making about bandwidth consumption. In particular, there is a reluctance
among users to delegate such bidding or scheduling to automated agents that stems from a conflict between
the psychological assurance of manual control and the convenience of automation, which in turn depends on
the perceived trust-worthiness of the underlying system. Many of the findings reported later in this chapter
on user behavior and user interface design may serve as guidelines in designing user-friendly client-side
agents to enable such pricing plans.

Another form of congestion pricing, effective bandwidth pricing, incorporates a form of QoS by charging
users based on their connection’s peak and mean rates [66]. One can also explicitly incorporate different QoS
by using priority pricing, in which users can pay less by accepting a longer delay at congested times [47]. If
the prices are chosen correctly, the system reaches an equilibrium, in which each user’s packets are processed
within the delay paid for.

Auction-based: One disadvantage of real-time congestion pricing is that in practice, the ISP must set the
prices (just) before observing user behavior. Since user demand can change with time, the ISP may end up
setting non-optimal prices due to outdated assumptions of user demand. “Smart market” pricing addresses
this slight delay with an auction-like scheme, in which users attach a bid to their packets that signifies their
willingness to pay [80, 88]. ISPs then admit a limited number of packets in descending order of the bids
so as to limit network congestion. Users are charged the lowest bid admitted, which represents the “cost of
congestion.” While smart market pricing allows true real-time pricing, it also requires automated agents on
user devices to make bids as necessary and keep track of the final amount charged.

Raffle-based: This is a variation of dynamic time-dependent pricing inspired by lottery reward mech-
anism. Under raffle-based pricing, the exact price that users pay is determined after-the-fact, i.e., in a
probabilistic manner that depends on the amount of data consumed by a user [78]. Users have a chance to
receive a monetary reward during congested times if they agree to shift their demand to less-congested times.
They are entered into a lottery for a fixed reward, where the probability of winning the lottery depends on
the user’s contribution to the total amount of traffic shifted. While such a pricing plan is attractive to ISPs in
that the total reward offered is fixed, users may be less willing to shift their traffic because of the uncertainty
in winning the lottery and the reward amount, which depend on external factors like the behavior of other
users.

Day-ahead time-dependent: In an effort to increase user certainty of the prices, ISPs can guarantee
their time-dependent prices one day in advance, and continue to compute new prices to maintain this sliding
one-day window of known prices [48, 61]. Users can then plan their usage in advance, while ISPs can adapt
their estimates of user behavior and usage volume in calculating the prices for subsequent days. Day-ahead
pricing thus strikes a balance between user convenience and ISP adaptability. This has been a successful
pricing mechanism in the electricity market, and hence can be adapted to broadband networks with careful
consideration. A schematic of the resulting feedback loop is shown in Figure 5. In the next section, we
examine a prototype of day-ahead pricing for mobile data in order to illustrate the “end-to-end” nature of an
SDP deployment.

We pause to briefly compare day-ahead TDP with the other types of dynamic pricing discussed above.
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Figure 5: Feedback loop schematic of day-ahead pricing.

Real-time pricing and Smart Market mechanisms require users to delegate some control and operate in an
automated mode as the time-scale is too short for user-mediated choices. On the other hand, simple 2-
period (day & night) time-of-day pricing has time scale that is too long to take advantage of any spare
capacity availability and time elasticity of demand which vary at much shorter time-scale. Auction-based
mechanisms will require modifications to the network equipments (e.g., agents to recognize bid amounts
and perform admission control) and client side agents for automated bidding. Raffle-based pricing creates
uncertainty in rewards and unless the time-varying prices are known in advance, users may be reluctant
to adopt such data plans. A day-ahead dynamic time-dependent pricing plans solves many of these issues
by providing guarantees on the future prices in advance, takes advantage of demand elasticities at shorter
time-scales, and provides ISPs with a mechanism to optimize the prices they offer.

But what are the challenges of realizing dynamic day-ahead time-dependent pricing?

• How to develop an economic model for dynamic day-ahead TDP which computes optimized prices
that accounts for users’ time elasticity of demand in maximizing the total revenue of the network
provider? The price computation needs to consider (a) the cost incurred in offering price discounts,
(b) savings from shifting some traffic from peak to off-peak hours, (c) the increase in baseline demand
in discounted periods due to potential “sales day” effect.

• How to engineer a system that enables this pricing by developing both provider and client-side mod-
ules (in particular, the user interfaces needed for users to react to the offered prices)?

• How can researchers carry out field trials of such pricing plans by interposing themselves as a “band-
width reseller” between the network providers and its real consumers? We will address these questions
in Sections 6.4, 7, 8, and 9.

5.3 Comparison with other Markets: Similarities and Differences
Let us now take a look at what forms of time-dependent pricing have been already field tested and exist in
the real world in networks that suffer from congestion problems to identify differences and opportunities
for innovating TDP plans for broadband networks. Much like today’s data networks, the electricity and
transportation markets have both experienced a capacity shortage over the past decade and have developed
new pricing plans to cope with the resulting shortfall. By comparing electricity usage and road traffic to data



traffic, we see that these industries are quite similar to data networks, and that their pricing plans may inform
SDP for mobile data. Indeed, both industries observe a highly variable demand throughout the day, allowing
for both static and dynamic pricing plans. In particular, time-of-day road tolls have been offered in many
transportation networks, and many electricity utilities have both trial-ed and deployed time-of-day pricing.
We give an overview of such pricing plans in this section, with the aim of highlighting the unique challenges
posed by refining such pricing plans to accommodate broadband data networks. Figure 6 gives an overview
of the analogies between pricing plans proposed for the transportation, broadband, and electricity industries.

The similarities and differences between these pricing plans reflect the different industries for which they
are designed. In particular, we observe the following distinctions:

1. Real-time communication: User devices on data networks, e.g., smartphones, are capable of real-time
communication with the ISP network, for instance if the prices change in real time. But such real-
time feedback for price (toll) changes in road networks is harder to realize and will require additional
infrastructural support. In electricity markets, new smart grid interfaces have been developed that can
display real-time prices, but individual devices, e.g., air conditioners or vacuum cleaners, generally
cannot interact directly with the provider smart grid and require a smart energy controller to schedule
their energy consumption.

2. Elasticity of demand: Smartphones’ ability to communicate with the ISP network in real time is
complemented by users’ ability to easily control their usage on individual devices and applications.
For instance, a user could simply stop streaming a video if the price increases; such measures could
also be automated within the device. The users’ decisions will reflect the large variance in the demand
elasticity of different types of applications (some of which, such as software downloading, P2P, file
backup may not even require user participation and can be completed in small chunks whenever low
prices are available). In contrast, devices on electricity networks typically consume energy constantly
as long as they are active. There is little opportunity for many devices (e.g., washer, dryer, lights) to
complete their activities in an intermittent manner without requiring active user engagement. In road
networks, the contrast is even more stark; users in the network (e.g., already driving) cannot easily
exit or postpone their activity.

3. Long-term volatility: Most people do not have a concrete idea of how much data they consume
each month, partly because most data plans charged a flat fee for unlimited access until recently.
Moreover, an individual’s data usage can vary greatly from day to day, as relatively casual actions
such as streaming a video can have a large impact on total data consumption. In contrast, most people
have a relatively good idea of how much they drive per day, and the distance traveled, and road toll
fees. Thus, people may be more able to plan ahead by buying permits (e.g., EZ pass) or carpooling
during congested hours. In electricity markets, household demand similarly does not vary much from
day to day. Consumption of electricity is largely driven by user needs, rather than the more volatile
preferences that drive demand for Internet data.

5.3.1 Static Pricing

Traditional road pricing has been simple flat-rate cordon pricing, analogous to flat pricing of data. Pricing
by vehicle type, analogous to app-based pricing for data, has also been proposed, e.g., charging trucks
more than passenger vehicles [127]. Forms of flat-rate priority pricing have also been implemented, most
obviously in the Paris metro’s pricing scheme from which data networks’ Paris metro pricing takes its name.
High-occupancy vehicle or “carpool” lanes can also been seen as analogous to priority pricing, in that users
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Figure 6: Comparison of pricing plans in the transportation, broadband, and electricity industries.

can self-select to take advantage of less-congested HOV lanes by paying the higher “price” of carpooling
with other passengers.

In a common variation on flat-rate tolls in road networks, the flat-rate toll can vary depending on the time
of the day [45], for a pricing plan analogous to time-of-day pricing. However, such charges are still flat-rate,
i.e., they do not depend on the distance traveled over the road network. Distance-traveled pricing, analogous
to usage-based pricing in broadband networks in that users’ charge is proportional to the distance traveled,
has also been proposed for transportation networks, and has been offered in Taiwan and the U.S. [56, 134].
In fact, the Taiwanese implementation varies the distance-traveled price depending on the time of the day; it
is thus a form of time-of-day pricing.

Time-of-day pricing is the major form of static pricing practiced in the electricity industry. Most trials
of time-of-day pricing for electricity markets have focused on peak/off-peak pricing, as electricity demand
generally follows a less variable pattern than data demand, with extremely low demand at night and higher
demand during the day. For instance, one major source of electricity consumption is air conditioning in
the summer, which follows a fairly regular pattern of being on during the day and off at night. Indeed,
many trials have shown time-of-day pricing to be effective in reducing excess demand during peak hours.
One popular variant that has also been trial-ed is critical peak pricing, in which certain days are designated
as “critical,” e.g., especially hot days during the summer. On these critical days, the peak price goes up
to increase users’ incentives to reduce demand. Some studies with California consumers have shown that
critical-peak pricing is much more effective than simple peak/off-peak pricing [15, 55]. In this trial, users
with “smart devices” that automatically reduce energy consumption reduced their usage almost twice as
much as other users, indicating that user interfaces for interacting with prices are critical to the success of
dynamic or time-of-day pricing plans.

5.3.2 Dynamic Pricing

Congestion-based pricing has been proposed in both the transportation and electricity industries. One form
of congestion pricing in road networks charges users at a price-per-mile rate that is based on their average
speed. However, though considered in Cambridge, U.K., this pricing plan was never implemented [45]. A
more complex pricing plan proposed using several dynamic origin-destination models to compute effective
route costs depending on real-time congestion conditions in the road network [64]. Drivers would then be
able to take shorter routes for higher prices; however, computing these prices is highly non-trivial, and it
would be difficult to communicate the prices of different routes to drivers in the network.



One variation on dynamic pricing for road networks involves a secondary market, in which governments
can sell permits to pass through congested areas. Users can then form a market to sell these permits [119].
However, similar pricing schemes have not yet been proposed for data networks, likely due to the difficulty
in setting up a secondary market among users. Moreover, the increasingly ubiquitous nature of data con-
nectivity has made it more impractical to ask users to completely refrain from consuming data at congested
times.

Some electricity pricing researchers have argued that dynamic pricing can lead to significant gains over
simple ToD pricing [7]. Both congestion pricing and auction pricing have been proposed for electricity
markets; however, such works often have a more consumer-focused outlook than do pricing proposals for
data. In an auction-based electricity market, electricity distributors can make dynamic offers to users (i.e.,
households) who respond with real-time electricity purchases. Auction schemes have been proposed that
take into account varying electricity capacity, which can significantly improve market efficiency [131].

Many papers have studied responsive dynamic pricing from a user’s perspective of predicting future
prices and scheduling devices accordingly. A game-theoretic framework can be used to model users’
scheduling of energy usage as a cooperative game; if users cooperate, the total demand on a network can then
be reduced, enhancing efficiency [12]. Other works propose algorithms to predict prices in advance [35, 86]
and schedule user devices accordingly; users thus try to anticipate electricity providers’ real-time pricing.
This price prediction is not necessary with day-ahead pricing, though day-ahead pricing offers electric-
ity providers less flexibility [63]. However, such prediction and scheduling algorithms, which have received
relatively little attention for data usage, might help make dynamic congestion pricing for data more amenable
to users.

Other papers consider users’ actions in conjunction with the provider’s price determination [8]. Such
approaches can facilitate a study of social welfare, and may incorporate uncertainty in supply and demand
[11, 14, 105]. One may also consider a feedback loop between users and an electricity provider, which
can yield real-time pricing algorithms analogous to those for dynamic congestion control in data networks
[103]. Some works have also considered appliance-specific models of user demand, analogous to different
applications having different demands for data [75]. A unique feature of these models is the ability to store
electricity, e.g., in batteries, for use in later congested periods. Thus, from the provider’s perspective, the
user can effectively shift his or her energy consumption to less congested times, even though from the user’s
perspective nothing has been shifted.

6 Economics of SDP
Given the wide variety of SDP pricing algorithms presented in Section 5, a thorough discussion of the theory
behind each one is impractical for a book chapter. In this section, we instead select four representative
scenarios to illustrate some of the key economic principles often used in formulating different types of
pricing algorithms. We first consider static pricing on a single link, and then consider both real-time dynamic
pricing and day-ahead time-dependent pricing. Readers familiar with network economics may wish to skip
this section.

6.1 Usage-Based Pricing: A Single Link Example
An operator generally sets its mobile data prices so as to achieve a certain objective, e.g., maximizing profit.
In this section, we review some standard economic concepts that are often used in formulating such objective
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Figure 7: User-ISP interaction in a mobile data marketplace.

functions. We consider two agents: end users and ISPs.9 For simplicity, we consider only one ISP with a
given set of customers, and we suppose that the ISP wishes to build a last-mile access link in its network. The
ISP wishes to determine both the capacity to provision on this link, as well as the price per unit bandwidth
to charge its users on the link. This is a standard monopolist profit maximization that we discuss below.
We denote the capacity with the variable x, and the price by the variable p. The ISP-user interaction is
summarized in Figure 7.

We first consider users’ decisions to purchase certain amounts of bandwidth on the ISP’s new access link.
In modeling this user behavior, we suppose that each user acts so as to maximize his or her consumer surplus
function, denoted by Uj(xj , p) for each customer j = 1, 2, . . . , J . The function Uj is the net benefit to a
consumer from the utility received in purchasing xj amount of bandwidth for a price p per unit bandwidth.10

Thus, given a price p, if Uj(yj , p) > Uj(xj , p), user j prefers to purchase yj units of bandwidth, rather than
xj units. Since the ISP chooses the value of p, each user j takes the price as given and chooses the quantity
of bandwidth to purchase (xj) so as to maximize the utility Uj(xj , p). We denote this utility-maximizing
quantity as x∗j (p).11 These functions x∗j (p) are called users’ demand functions; adding them up, we obtain
the aggregate demand function, D(p) =

∑
j x
∗
j (p).

We now consider the ISP’s problem of choosing a link capacity x and price p. Given a price p and
assuming full utilization of the link capacity, the ISP chooses x so as to maximize its utility function. Usually,
the ISP’s utility is simply its profit, but other functions can be used. We write the ISP profit as px − c(x),
where px is the ISP revenue and the function c(x) denotes the cost of building a link of capacity x. Given p,
the ISP can then find x∗(p), the optimal link capacity as a function of the price p. We use S(p) = x∗(p) to
denote this supply side function.

9Sponsored content and app-based pricing models may also include content providers as a separate type of agent.
10This function may be additively decomposed into the form Uj(xj , p) = Vj(xj) − pxj , i.e., a utility term Vj and the price paid

pxj . In this scenario, Vj(xj) is often called the utility, and Uj(xj , p) the net benefit received by the user. Additively incorporating
the price can also be interpreted as incorporating user budget constraints through Lagrange multipliers; more details can be found in
Section 6.3.

11The argument p emphasizes the fact that this optimal bandwidth x∗
j depends on the price p offered by the ISP.



When the user and ISP are at a market equilibrium, supply equals demand: D(p) = S(p). At such a
price p∗ satisfying this relation, each user maximizes his or her own utility by purchasing x∗j (p∗) amount
of bandwidth, and the ISP maximizes its utility by providing just enough capacity x∗ (p∗) =

∑
j x
∗
j (p∗) to

support those users’ demands. One often-analyzed property of this equilibrium is the social welfare, defined
as the sum of the utility received by all users j and the ISP:

∑
j

Uj
(
x∗j , p

∗)+ p∗
∑
j

x∗j − c

∑
j

x∗j

 ,

where x∗j is understood to be evaluated at the equilibrium price p∗. This social welfare can be divided into
two portions: the user surplus, or the sum of user utilities, and the ISP surplus, or the utility (here, profit)
obtained by the ISP. Depending on the utility functions Uj and the cost function c, the total social welfare
may change, and the users and ISP may receive different portions of the overall social welfare.

Before moving on, we pause to discuss some of the more common extensions of the simple problem
above. One is to introduce budget constraints on each user’s utility maximization problem: the user may
not want to spend more than a certain amount Bj , in which case each user j maximizes the utility Uj(xj , p)
subject to the constraint pxj ≤ Bj . We may also consider a situation in which users impose externalities on
each other, i.e., a given user j’s utility is affected by the capacity allocated to other users i 6= j. For instance,
there may be a positive externality in which user j’s utility increases as other users send traffic over the link
in order to interact with user j. On the other hand, one could also observe negative externalities, in which
congestion from other users’ traffic diminishes a particular user’s utility, e.g., by increasing delay.

When solving for the market equilibrium above, we initially took the price p as fixed for the end users
and ISP, and then found the equilibrium market price p∗. In fact, one can obtain this equilibrium price
by only examining the optimal behavior of end users and ISPs, i.e., without explicitly considering market
equilibrium. Suppose that the ISP, knowing users’ demand functions x∗j (p), calculates its revenue as a
function of price to be p

∑
x∗j (p) (the price, multiplied by the user demand as a function of price). The

ISP can then choose both p and x so as to maximize its profit p
∑
j x
∗
j (p) − c(x), subject to the constraint

that the link capacity be able to accommodate users’ total demand
∑
j x
∗
j , i.e., that x ≥

∑
j x
∗
j . It is easy

to see that (assuming the cost c(x) is increasing in the capacity x), at the optimum, x =
∑
j x
∗
j . The ISP

then chooses the optimal price p so as to maximize p
∑
j x
∗
j (p) − c

(∑
j x
∗
j (p)

)
. One can show that the

resulting optimal price, which we will call p, is the same equilibrium price p∗ obtained above: at p, each
user j demands x∗j (p), and the ISP chooses its optimal capacity x∗(p). This is exactly the point at which the
supply and demand curves intersect, i.e., p∗.

The above reasoning, in which an ISP chooses a price to offer subject to users’ behavior as a function
of the price chosen, is a simple example of a game between users and ISPs. In such a game, several players
interact with each other, and each player acts to maximize his or her own utility, which may be influenced
by other players’ decisions. For instance, in this scenario, users interact with the ISP by utilizing the access
link in its network and paying some price. Their decisions on how much capacity to utilize (i.e., choosing
x∗j ) are influenced by the ISP’s choice of the price p. This interpretation of the single-link example leads us
to next consider some basic principles of game theory in relation to SDP.

6.2 Incentive Compatibility: Game-Theoretic Principles
To illustrate some of the basics of game theory, we again consider the single link example above. The user-
ISP interaction in such a scenario is an example of a Stackelberg game, in which one player, the “leader,”



makes a decision (e.g., the ISP sets a unit price p for link capacity) and the remaining players, or “followers,”
then make their own decisions based on the leader’s actions. In SDP, this framework reflects the need to
consider users’ and ISPs’ optimal actions when choosing pricing policies that incentivize particular types of
resource allocations. In this example, users choose their demands x∗j (p), given the ISP’s price p. Stackelberg
games, which often arise in user-ISP interactions, may be solved using backwards induction: first, one
computes the followers’ actions as a function of the leader’s decision (in our example, we compute the
functions x∗j (p)). The followers’ actions are sometimes called a best response to the leader. The leader then
takes these actions into account and makes his or her own decision (given that users’ demands are x∗j (p), the
ISP chooses the optimal price p). This decision is then the best response to the followers.

The backwards induction process leads to a subgame perfect equilibrium in the Stackelberg game: at
this equilibrium, each player is maximizing his or her own utility, and no player has an incentive to change
his or her behavior. To formalize this definition, we will need to first explain the concept of a Nash equi-
librium. Consider a general game with n users, each of whom can take an action, e.g., by choosing the
value of a variable yj ; j = 1, 2, . . . , n; and suppose that each user j’s utility Vj is a function of all of
the yj variables, i.e., Vj = Vj (y1, y2, . . . , yn). Then a set of actions z1, . . . , zn is a Nash equilibrium if
Vj (z1, . . . , zj , . . . , zn) ≥ Vj (z1, . . . , yj , . . . , zn) for any yj 6= zj . In other words, assuming that all the
other players take actions zi, player j’s action zj optimizes its utility Vj .

We may generalize the concept of a Nash equilibrium to a Stackelberg game’s subgame-perfect equilib-
rium by considering subgames of the Stackelberg game. We do not give the general definition of a subgame
here, but it may be understood by envisioning the Stackelberg game as a dynamic game with different lev-
els defined by the time of decision: on the first level, users make their decisions, and on the second, ISPs
make their decisions. A subgame encompasses a group of players who mutually interact, but do not directly
interact with other players at their level. In our scenario, a subgame would be a subset of users and the ISP.
A subgame-perfect equilibrium of the full Stackelberg game is then a set of actions that comprise a Nash
equilibrium in each subgame of the full game. It can be shown that any equilibrium found from backwards
induction is a subgame-perfect equilibrium; one can easily check that this is the case in our example sce-
nario. Nash and subgame-perfect equilibria are considered stable in that once they have been achieved, no
user has an incentive to change their behavior. (Unfortunately, one cannot in general guarantee that such an
equilibrium will be achieved in the first place, and a game may have multiple Nash equilibria.)

Another type of game that often arises in SDP is that of competing service providers. For instance,
we may have an oligopoly of a few companies who dominate the market for mobile data, e.g., AT&T and
Verizon in the United States are the dominant market players. Each of these companies then competes for
customers (i.e., market share) and revenue with the others. This competition defines their interactions, and
each company can try to make strategic decisions that optimize its market share. Given a mathematical
model of the companies’ actions, one can then try to study the corresponding game, e.g., by computing
possible Nash equilibria.

While certainly useful for explicit pricing problems like that considered above, game theory can also
be applied to more general resource allocation problems, just as SDP allows ISPs to incentivize users to
consume data so as to realize particular resource allocations. To illustrate these uses, we again consider the
single link example, but we now suppose that the link’s capacity is fixed and that the ISP wishes to allocate
this fixed amount of capacity x among its n users.

If users selfishly maximize their individual utilities (i.e., choose demands x∗j (p)), then the ISP can set a
virtual price p to force an allocation in which

∑
j x
∗
j (p) = x, i.e., all of the available capacity is utilized,

and each user maximizes his or her utility. This price serves as a signal through which the ISP can control
users’ demands. However, such an allocation may be unfair: very price-sensitive users may be able to afford
significantly less capacity than others. Since revenue is no longer involved, the ISP can afford to care about



other objectives like fairness. Indeed, a vast literature exists on just such a problem; we will not go into
fairness theory here, but we will present one approach inspired by game theory.

In the Stackelberg game discussed above, users did not cooperate: each user maximized only his or her
own utility, subject to the ISP’s offered price. Yet if users do cooperate, they may reach a better decision.
We can study this problem by first defining individual users’ utilities Uj(yj); given a capacity amount yj ,
each user j derives utility Uj(yj). For instance, users could jointly choose their demands yj , subject to
the capacity constraint

∑
j yj ≤ x, so as to maximize an overall utility function U (U1(y1), . . . , Un(yn)).

Depending on the choice of U , of course, one would obtain different allocations y∗j . We use y∗j to denote the
yj that jointly maximize U . Nash proposed that the y∗j satisfy the following four axioms:

1. Invariant to affine transformations: For each user j, define the utility function Vj(yj) = αjUj(yj)+βj
for some constants αj > 0, βj . Then the allocation

{
z∗j
}

maximizingU (V1(z1), . . . , Vn(zj)) satisfies
Vj
(
z∗j
)

= αjUj
(
y∗j
)
+βj for each user j, where the allocation

{
y∗j
}

maximizesU (U1(y1), . . . , Un(yn)).
An affine transformation of the utility functions Uj does not change the utility received at the optimal
allocation.

2. Pareto-optimality: An allocation {y∗1 , . . . , y∗n} is Pareto-optimal if for any user j, any feasible alloca-
tion {z1, . . . , zn} with Uj(zj) > Uj

(
y∗j
)

satisfies Ui(zi) < Ui (y∗i ) for some user i. In other words,
no user can be made better off without making another worse off.

3. Independence of irrelevant alternatives: Suppose thatU (U1(y1), . . . , Un(yn)) > U (U1(z1), . . . , Un(zn))
for two feasible allocations {yj} and {zj}. Then if the problem constraints are relaxed to allow new
feasible allocations, we still have U (U1(y1), . . . , Un(yn)) > U (U1(z1), . . . , Un(zn)).

4. Symmetry: Suppose that {y1, . . . , yn} and {z1, . . . , zn} are feasible capacity allocations withUj1(yj1) =
Uj2(zj2) for some users j1 and j2, Uj2(yj2) = Uj1(zj1), and Uj(yj) = Uj(zj) for all j 6= j1, j2. Then
U (U1(y1), . . . , Un(yn)) = U (U1(z1), . . . , Un(zn)). In other words, switching the order of the utili-
ties received does not change the overall utility U .

An allocation satisfying these four axioms is said to be a Nash bargaining solution. One can show that if
U is taken to be

∏
j Uj(yj), then the resulting y∗j is a Nash bargaining solution. Taking the logarithm, we

see that this is equivalent to maximizing
∑
j log (Uj(yj)). In other words, users choose their demands to

maximize the sum of the logarithms of their utilities Uj . Since the logarithm is sub-linear for large Uj(yj),
the optimal allocation

{
y∗j
}

will penalize large values of Uj relative to smaller ones, yielding a “more equal”
allocation Uj

(
y∗j
)

than simply maximizing the sum of utilities
∑
j Uj(yj).

6.3 Real-Time Dynamic Pricing
So far, we have focused on pricing and bandwidth allocation of a single access link. However, in reality
an ISP’s network does not consist of single bandwidth links: it is, in fact, a network, with multiple nodes
and links between them. Data traffic between two nodes, e.g., between a user and a content provider, flows
across a subset of the network links. Since different links may experience different types of congestion at
different times, an ISP may want to adjust the prices charged based on how much congestion is experienced
by a particular user at a given time. It is this philosophy that lies behind dynamic pricing for congestion
control.

To illustrate the basic concepts of congestion control, we consider a relatively simple example given in
Kelly et al.’s seminal paper on the subject [68]. Consider a set of nodes, indexed by n = 1, 2, . . . , N , and
a set of links indexed by l = 1, 2, . . . , L that connect different nodes together. We suppose that each node



n wishes to communicate with another node, and we use Rn to denote the subset of links traversed by node
n’s traffic.12 The ISP’s goal is then to set a traffic rate xn for each node n, such that 1) the total amount of
traffic on any link l lies below link l’s capacity cl, and 2) all users are as satisfied as possible. To accomplish
this, each link can set a unit congestion price for traffic on the link. By prescribing the evolution of these
prices in time, the ISP can satisfy its two objectives in a distributed manner.

We first define a routing matrix to summarize the routes taken by different nodes’ traffic over the network:
let R be an L ×N matrix, and set Rln = 1 if l ∈ Rn, i.e., node n’s traffic travels over link l, and Rln = 0
otherwise. If we concatenate nodes’ traffic rates xn into an N × 1 vector ~x, we see that ~y = R~x yields a
vector of length L. Each entry yl of ~y equals the total volume of traffic on link l. Letting ~c be an L × 1
vector of the capacities of each link l, we then have the capacity constraint R~x ≤ ~c: the total amount of
traffic on each link l cannot exceed the link’s capacity.13 This constraint ensures that the ISP’s first objective
is satisfied.

The ISP’s second objective is that each user be “as satisfied as possible.” We define satisfaction by
defining utility functions Un(xn) for each node n; the ISP is then assumed to assign source rates xn so as to
maximize the total sum of utilities,

∑
n Un(xn), subject to the constraint R~x ≤ ~c. To solve this problem, we

next make the assumption that each utility function Un is concave. Such an assumption is consistent with the
economic principle of diminishing marginal utility, i.e., that the extra utility received from an additional unit
of bandwidth decreases as the user receives more and more bandwidth. Under this assumption, the ISP’s
objective function

∑
n Un(xn) is concave. Since the constraints R~x ≤ ~c are linear, the overall optimization

problem is a convex optimization.
We now follow standard optimization theory and introduce a L × 1 vector of Lagrange multipliers ~p,

with each pl corresponding to link l’s capacity constraint in the component-wise inequality R~x ≤ ~c. These
multipliers ~pwill eventually become the congestion prices set by the links l. The ISP’s optimization problem
is then equivalent to solving

min
~p≥0

max
~x

(
N∑
n=1

Un(xn) + ~pT (~c−R~x)

)
. (1)

Solving (1) centrally can be done relatively easily; it is not hard to see that we have the solution

x∗n = U ′n
−1

(qn) , p∗l =

{
0 if cl − yl > 0

> 0 ifcl − yl = 0
,

where we define ~y = R~x and the nth entry of the N × 1 vector ~q = RT ~p equals the sum of the congestion
prices for the links traversed by node n’s prices; qn thus represents the total price paid by user n. However,
our goal is to develop a distributed solution, in which nodes adjust their rates xn and links adjust their prices
pl so as to converge to the optimal solution. The ISP can drive these dynamics with the link prices–i.e., links
change their prices pl, and nodes respond by adjusting their rates xn according to the solution above. An
example of a price-driven algorithm is [79]

pl(t+ 1) = [pl(t)− γ (yl(t)− cl)]+ , xn(t+ 1) = U ′n
−1

(qn(t+ 1)) , (2)

where the argument t denotes the value of a variable at time t, and we consider discretized times t = 1, 2, . . .
The constant γ > 0 is a stepsize parameter, and the + superscript [α]

+ denotes the maximum of a quantity α
12Choosing the optimal routes for each node n is a non-trivial problem in itself; for simplicity, we assume here that all of the routes

Rn are fixed.
13This inequality is to be interpreted component-wise, i.e., each component of the left-hand and right-hand side vectors should satisfy

it.



and 0.14 We note that each link l evolves its price pl using only the traffic on that link yl(t) and its capacity
cl, both of which are known without communicating with other nodes or links. Similarly, each node n
adjusts its rate xn based only its price qn, a quantity that can be carried with node n’s traffic and is known
without node n communicating with other nodes or links. One can show that these dynamics converge to
the optimal prices and rates if the stepsize γ is sufficiently small. Moreover, as user utilities Uj or link
capacities cl change over time, following the dynamics (2) will reposition the rates and prices to their new
optimal values. Thus, real-time dynamic pricing can adapt to network congestion levels and keep ISP traffic
from exceeding the network capacity. We explore some variations on this dynamic pricing model in the next
section.

6.4 Dynamic Day-ahead Time-Dependent Pricing
One limitation of real-time dynamic pricing is that it requires users to respond to price changes by adjusting
their demands in real time. Yet to consciously involve users in adapting their demand to price changes, a
longer timescale is preferable.15 In this section, we again consider the case of a single access link for longer
timescale time-dependent pricing. Our goal is to develop an alternative model that is simple enough to be
practical as a real pricing plan, yet also helps to alleviate congestion on ISP networks. We aim to offer
prices to users in advance, so that users can have more certainty in planning changes to their usage behavior.
Indeed, previous studies showed that prices which change in real time can discourage changes in usage,
as users are not sure whether the price will decrease in the future [117]. Additionally, in computing the
optimized prices (discounts) that maximize network provider’s profit, the model needs to consider (a) the
cost incurred from offering price discounts, (b) the savings from shifting some traffic from peak to off-peak
hours, and (c) the increase in baseline demand in discounted periods due to potential “sales day” effect.

We divide one day into T time periods–e.g., T = 24 periods of one hour each–and suppose that the
ISP can offer a different price at each time t = 1, 2, . . . , T . We suppose that the ISP has an existing link
of capacity C, and that it may accommodate additional demand at a marginal rate γ. This additional cost
may represent the increased cost of handling customer complaints once usage exceeds capacity C, or an
additional investment cost necessary for increasing the network capacity. We let Xt, t = 1, 2, . . . , T , denote
user demand at each time t. Then the ISP’s cost of accommodating these demands is

T∑
t=1

γmax (Xt − C, 0) . (3)

Given that accommodating demand in the peak periods is more expensive than demand during less-congested
periods in which Xt < C, the ISP has an incentive to offer lower prices in less-congested periods, thus
inducing users to shift some demand into those periods. This is the core idea of time-dependent pricing: by
offering lower prices during less congested times, the ISP can even out its demand over the day, resulting in
lower capacity costs. Our treatment here follows that in [48].

To formalize this argument, we next need to develop a mathematical model for users’ shifting of traffic
in response to the prices offered. We let pt denote the price offered by the ISP at each time t. We suppose
that the ISP can offer a maximum price that is normalized to 1, e.g., if the ISP currently offers a usage-
based price of 1 without time-dependent pricing. We can then define the discount offered at each time t as
dt = 1 − pt. Users’ willingness to shift some traffic from one period t1 to another period t2 then depends

14This modification ensures that the prices are nonnegative.
15There is of course a tradeoff in choosing the timescale: while longer timescales are simpler for users to understand, shorter

timescales allow prices to more accurately reflect congestion.



on the additional discount offered in period t2, i.e., dt2 − dt1 . If dt2 >> dt1 , then the user will be able to
save more money and thus will be more willing to shift his or her traffic.16 However, users’ willingness to
shift their usage does not just depend on the discounts offered: it also depends on the time shifted t2 − t1.
For instance, a user may be very willing to shift some traffic by half an hour, but much less willing to shift
his or her usage by more than an hour, even with the same discounts.17

The discounts offered and time shifted are not the only factors determining how willing users are to shift
their data traffic: the type of traffic also matters. Software downloads, for instance, may be readily delayed by
several hours, but users are often much less willing to delay urgent apps like email retrieval. For simplicity,
in the following discussion we assume only one type of traffic, but our model can be easily extended to
multiple traffic types by adding up the amount of traffic shifted for each traffic class. Considering multiple
traffic classes is necessary for ISPs to accurately take user behavior into account: since each user will have
some traffic that can be delayed more than other traffic, the fact that we consider the simultaneous behavior
of multiple users need not mitigate the need for multiple traffic classes.18 We use w(d, t) to denote users’
probability (i.e., willingness) to delay their traffic by an amount of time t, in exchange for an additional
discount d. We suppose that w is increasing in the discount d and decreasing in time t, and that the value of
w lies between 0 and 1, so that it may be interpreted as a probability. Many functions w meet these criteria,
e.g., the functions

w(d, t) =
max(d, 0)

Γ(t+ 1)β
,

where Γ is a normalizing factor and β ≥ 0 is a model parameter that controls the rate at which willingness
to shift decreases with the time shifted t. For larger values of β, the willingness to shift decays faster with
time, denoting increased impatience.

The general idea behind our model is to use the w(d, t) functions to calculate how much traffic is shifted
to different times of the day, relative to a baseline traffic pattern without time-dependent discounts. Our
model thus attempts to reflect users’ thought processes in looking at a set of future prices and deciding
whether to delay their traffic or not. While a more traditional model would use utility functions (cf. Section
6.1) to describe users’ behavior, user utility functions are difficult to derive from user behavior, since “utility”
attempts to quantify the relatively vague idea of “user benefit.” The probability of shifting traffic, on the other
hand, can be calculated directly from observing the amount of traffic shifted in response to discounts offered
to users.

Given the functions w, the expected amount of traffic shifted from time t1 to time t2 is

w (dt2 − dt1 , |t2 − t1|T ) ,

where |t2 − t1|T denotes the number of periods between time t2 and period t1, modulo the number of periods
T (e.g., if t2 < t1, then |t2 − t1|T is the number of periods between period t1 and period t2 on the next day).
Given an initial amount of traffic Yt in each period t, we calculate that Yt1w (dt2 − dt1 , |t2 − t1|T ) amount
of traffic is shifted from time t1 to time t2. The ISP then loses (dt2 − dt1)Yt1w (dt2 − dt1 , |t2 − t1|T )
amount of revenue due to the traffic shifted from time t1 to t2. Some additional revenue is lost from the

16One could also consider functions such as the ratio of discounts in the two periods, but dt2 − dt1 has a reasonable interpretation
as the amount of money a user can save by shifting traffic.

17In this section, we suppose that users only delay their traffic, i.e., traffic is shifted only to later, not earlier, times. In practice both
types of shifting can occur, but we make the reasonable assumption that it is more natural for users to delay some traffic than it is to
anticipate future usage.

18The amount of traffic corresponding to each traffic class can be treated as a model parameter; along with the other model parameters,
it can be estimated from observed aggregate usage data.



unshifted traffic in each period, for a total revenue loss of

T∑
t=1

Ytdt +
∑
s6=t

Ys (dt − ds)w (dt − ds, |t− s|T )

 . (4)

In addition to this revenue loss, offering discounts at some times may induce users to increase their overall
usage during those time periods. This increase is independent of any usage shifted from more expensive
times and constitutes a psychological “sales day effect,” which was observed during time-dependent pricing
trials [48, 112]. It reflects the qualitative insight that user demand increases as the price charged decreases:
users see that they are saving money, relative to usage during high-price periods, and are thus encouraged
to spend and use more. The larger the discount offered dt, the larger this increase will be. We can model
this increase with a power law: given an initial amount of traffic Yt in period t, the amount of traffic after
a discount dt is offered (neglecting any traffic shifted to other periods) is Yt (1 + dt)

α for some positive
model parameter α. We then have the desirable property that demand does not change if no discount is
offered (dt = 0); if α = 0, the total demand does not depend on the discount at all. The ISP thus earns
additional revenue

Yt ((1 + dt)
α − 1) (1− dt) (5)

due to this additional demand in period t. We can then add the ISP’s revenue loss from discounts offered
(4), less the revenue gain (5) from additional traffic, to the ISP’s cost of capacity (3) to obtain the objective
function

T∑
t=1

Ytdt − Yt ((1 + dt)
α − 1) (1− dt) +

∑
s6=t

Ys (dt − ds)w (dt − ds, |t− s|T ) + γmax (Xt − C, 0)

 ,
where the total traffic at each time t is

Xt = Yt (1 + dt)
α

+
∑
s6=t

Ysw (dt − ds, |t− s|T )−
∑
s 6=t

Ytw (ds − dt, |s− t|T ) .

The first term represents the increase in traffic due to the discount, while the second is the amount of traffic
deferred into period t, and the third term the amount of traffic deferred out of period t. The ISP then chooses
the discounts dt (equivalently, the prices pt = 1− dt) to minimize its objective function. Under reasonable
conditions on α, γ, and w, this is a convex optimization problem, which may be rapidly solved.

By solving this optimization problem, the ISP can obtain a set of prices for one day; it can then offer
day-ahead pricing by running an optimization in each period that determines the optimal discount to offer
one day from the current time. Moreover, the ISP can observe the traffic consumed in each period once these
discounts are offered. Comparing this data to the traffic observed without discounts, the ISP can estimate
the parameters of its user behavior models (i.e., α and w above) from the observed changes in usage, given
the prices offered. These estimates can be periodically updated and used to calculate new prices, completing
a feedback loop (cf. Figure 5) between users and the ISP [48].

7 Psychological Aspects of SDP
Arguably, the foremost factor in realizing a successful data plan is its adoptability by end users. But this
depends not only on good economic models and system capabilities, but also on understanding consumer



behavior and psychological aspects, and in particular, how client-side interfaces need to be designed to
make them effective. These concerns require the networking researchers to interact and work closely with
the ongoing efforts in the human-computer interaction (HCI) community. This section covers some of the
basic themes emerging from the HCI research on psychology of Internet users.

As early as 2005, HCI researchers introduced networking, particularly user behavior considerations in
home networks, as an important aspect of HCI studies [46]. In the context of broadband networks, few HCI
works have developed human-facing systems to manage network usage. The Eden system [136] modified
a home router to provide users with an intuitive interface for managing their “home network experience.”
The main focus of such home-networking tools has been on designing GUIs to help users understand the
physical location of different devices in their home and be able to perform basic administrative function-
alities like perform membership management, access control, network monitoring, etc. In a similar vein,
the Homework project [87] modifies the handling of protocols and services at the home router to monitor
data usage, prioritize different devices, and monitor other users data consumption (usually in the context of
parental control) in order to reflect the interactive needs of the home. Other studies have focused on under-
standing the impact of monitoring and sharing bandwidth speed in a wired home network [21]. The authors
carried out a field trial with 10 households using a visual network probe designed to help educate and em-
power consumers by making broadband speeds and sources of slow-downs more visible. In a separate work,
Chetty et al. [20] also carried out a field trial of their Home Watcher bandwidth management tool to study
the effect of viewing others bandwidth usage on social dynamics in the household. They showed that when
resource contention amongst different household members is made visible, users have better understanding
of bandwidth their usage and allocation, revealing new dimensions in household politics. Yet while these
works addressed several crucial elements of network intervention (e.g., throttling, capping, parental control)
and its related visualization tools, they have been limited to either modifying the network stack within the
OS [20] or deploying a custom-built access point [87]. In contrast, the need today is to focus on understand-
ing the following issues: (a) how economic incentives (i.e., pricing) can impact and modify mobile user
behavior, (b) how researchers can carry out field trials (almost seamlessly from an end-user perspective) by
interposing between the ISP and its real customers (i.e., participants).

In the context of mobile networks, [104] considers the need for mechanisms to help users track their
spending on mobile data. This line of research on user interface designs needs more attention to realize more
dynamic pricing plans and study user response to such plans. However, realizing such data plans requires
assumptions of rational behavior to be realized in practice, i.e., that people perceive the pricing signals and
change their behavior. The Berkeley INDEX project [128] in the 1990s for wired Internet suggested that
users should be able to view prices and select desired QoS levels (i.e., bandwidth speed), with similar results
reported by the M3I project [9]. Similar field trials on the HCI aspects of time-dependent pricing for mobile
data have been reported in [112], and the main themes emerging from these studies will be discussed below.

Recently, there have been calls to investigate HCI aspects of time-dependent pricing in the context of
ecological sustainability and energy consumption [98]. Even without economic incentives, good UI designs
of energy monitors have been shown to be effective in changing consumer behavior [40, 98]. These inves-
tigations have ranged from a large-scale media art installation visualizing energy consumption in an office
building, to power strips that change color to show the energy used by individual electrical sockets [54, 57].
One of the usual tradeoffs in visualizing energy usage is the use of pictorial versus numerical usage amounts.
For instance, the iPhone application WattBot allows users to monitor their home energy usage, with colors
indicating usage amounts [97]. While the colors enabled users to quickly grasp their qualitative energy us-
age, users also wanted to track their evolving usage behavior by viewing their usage history [22]. In addition
to the “manner” of presenting usage data, users expressed concern over the “convenience” of checking their
usage. For instance, researchers testing a desktop widget that showed computer energy efficiency found that



users appreciated the inconspicuous, easy-access nature of the widget [70]. Many of these design insights
were incorporated in the client-side UI design of the TDP trial for mobile users reported in [112]. Another
key consideration in designing such mobile applications for smarter data plans is that the GUIs need to be
account for the form-factor, presentation, and convenience of use on mobile devices and platforms. Incorpo-
rating features like parental control and usage history have been found to be desirable to users, even in the
TDP paradigm [101, 112].

The main themes emerging from these research on HCI aspects of networking are that:

1. Consumers are very concerned about the increasing cost of data plans but are not fully aware of their
monthly usage. Therefore mechanisms that help them to better monitor and control their own usage
and allocate bandwidth among household members (or in shared data plans for mobile) are perceived
to be useful by users. Moreover, given the right economic incentives, many are willing to wait for
some form of a feedback signal from the network on the congestion levels and change their behavior,
e.g., choose higher QoS service for critical applications in smart market scenarios [9], or wait for
discounted periods for non-critical applications in case of time-dependent data plans [112]. This is
therefore a promising direction in the evolution of Internet pricing, and follows similar trends in other
markets like electricity and transport networks.

2. The key factor in enabling smart data plans is designing the user interfaces that are effective and un-
derstandable to users. Previous research has shown that well-designed user-side applications can not
only help users make decisions on deferring usage, but also can become a tool that helps them to
self-educate, monitor, and control their usage and spending. Among the features found to be effective
as means of communicating useful information to users were color-coding19 of price/discounts, infor-
mation indicators (e.g., current price) on the home screen of devices, usage history, recommendations
on usage deferrals, etc.

3. Past research also revealed interesting insights on the user psychology of controlling their usage. First,
trial participants viewed parental control at the granularity of apps as being useful in managing their
usage. Second, they showed a desire to control their usage manually instead of delegating control to an
autopilot mode. When coupled with the desire for parental control, we find users want to take charge
of their consumption behaviors, for themselves and their families, in ways that require transparency
and flexibility. This tradeoff between users’ desire for transparency and control will be an important
design considerations for enabling smarter data plans.

4. Consumers prefer a certain degree of certainty in the prices, which explains the popularity of flat-
rate plans. Therefore for dynamic and smarter data plans to succeed, the time granularity of changes
in prices have to be carefully accounted for. Users want to know and have certainty about these
prices/discounts in advance, and therefore naive dynamic pricing plans may not work. In particular,
real-time pricing that provides price signals based on current congestion levels may demand a higher
degree of user engagement (or automation) than users are willing to adopt. Plans that have been
explored in energy markets, such as “day-ahead” pricing [48, 112], therefore may be more acceptable
to users.

5. As both networking and HCI address increasingly complex socio-technical ecosystems, e.g., mobile
Internet, cloud computing, smart grids, etc., incorporating economic analysis as a part of user behavior
studies is important. There is also a need to understand how researchers can create new frameworks

19While color-coding has been used and appeared effective in several scenarios, care must be taken to provide a secondary signal for
persons suffering from color-blindness.



for realistic experiments and field trials on the HCI aspects of network economics. Various research
ideas have taken different systems approaches, from modifying the network stack within the OS [20]
to deploying custom-built access points [87], to the TUBE project [48] which developed a system for
researchers to act as a resale ISP by interposing between ISPs and their customers, and provided these
two sides with client-side mobile applications and ISP-side incentive computation modules.

8 Engineering Aspects of SDP
Following the works of congestion pricing by Kelly, Gibbens, and others [42, 66–68], researchers have fo-
cused on developing the basic idea of pricing bandwidth resources according to congestion marks (i.e., price
“pollution” instead of just volume). Congestion marks on packets can be used as a mechanism to indicate
to the end-users or end-systems (or “agents”) that they may need to pay more to avail a certain level of QoS
when the network gets congested. A team of researchers, led by Briscoe,20 today are developing these ideas
on the accounting architecture, feedback aspects of congestion signaling, incentive compliance, security etc.
in conjunction with working groups like WG CONEX in the IETF21 that focus on implementation aspects.
One such EU collaborative project, the M3I (Market Managed Multi-service Internet) has proposed an ar-
chitecture for market management of the Internet’s QoS and demonstrated new business models that it can
enable. The core of the QoS problem tackled by the M3I project is to solve the fast control problem to avoid
QoS degradation during short-term congestion. In doing so, the M3I architecture requires network providers
to deploy ECN (Explicit Congestion Notification) on all routers so that the congestion experienced field in
the IP packet header can be set with a probability related to the current network load, allowing prices to
adapt to the congestion conditions in the network. The M3I solution can be realized in different ways and in
different scenarios, which have been extensively discussed in [9]. One solution uses these pricing feedback
signals to encourage self-admission control. In effect this is real time pricing (RTP) version of time-of-day
pricing. A second solution synthesizes admission control at the network edge from a dynamically priced
wholesale service.22 The M3I technology has also implemented several business models over different QoS
mechanisms as discussed in [4]. In a similar vein, [133] has used game-theoretic model to explore the uplink
pricing as a way to provide differential pricing to P2P and regular users in a competitive market.

Like M3I, much SDP research realizes the vision of pushing control out of the network into the hands
of the end-users. However, giving users more usage control has to be introduced carefully so that the users
are not overwhelmed with choices and network providers do not lose revenue. Users typically prefer to
have some certainty about their monthly bills and hence as opposed to real-time dynamic pricing, some
SDP researchers have looked at day-ahead time-dependent pricing. But day-ahead pricing requires network
providers to be able to optimize for the future prices they are willing to offer based on past usage patterns
and their prediction of user elasticity of demand for various types of traffic. On the user-side, it requires
developing interfaces through which users can provide their feedback to these prices.

The key subsystems required in realizing the basic feedback-control architecture envisioned in M3I [9]
and SDP are:

1. Tariff Communication is used to distribute pricing policy to other subsystems. The Price Commu-
nication Protocol (aka Tariff Distribution Protocol [53]) is a flexible protocol that can use different
transport mechanisms like UDP multicast, HTTP and RSVP to distribute tariffs between the ISP’s
management systems and to customers.

20http://bobbriscoe.net/pubs.html
21http://datatracker.ietf.org/wg/conex/charter/
22http://bobbriscoe.net/projects/m3i/dissem/cc02/m31 cc02.pdf



2. Charging, Authentication, and Accounting module applies the chosen tariff plan to measured usage
data for billing purposes.

3. Price Computation calculates optimal prices to offer to the user. In M3I, this price adapts to the real
time network load while in SDP the prices are computed in advance to provide guarantees to the user’s
expenses.

4. Optimization and Prediction Modules are used by the provider to predict the future congestion levels
and estimate the users’ patience across different traffic classes at different types of traffic based on
the history of traffic volumes and the observed changes to it in reaction to offered prices. The opti-
mization module then computes the optimal prices (or discounts) to offer to the end-users in the SDP
architecture.

5. Data Gathering/Usage Metering is used by the provider as inputs to the charging and accounting
systems and for price calculation.

6. Mediation is used to aggregate gathered data and do format conversions as needed.

7. Client Scheduler is used in the SDP framework to create an “autopilot” mode of operation for the end-
user which schedules the various types of application traffic based on user’s specified delay elasticities
and offered future prices so as to minimize user expenses.

8. Charge Reaction allows customers to react to the offered prices which gets fed back into the feedback-
control loop between the ISP and its customers. In some scenarios such function is performed by a
software agent on the end-user device (e.g., “autopilot” mode in SDP or the Dynamic Price Handler
in M3I), while in others, as in day-ahead TDP, user interfaces need to be provided for users to react to
the offered prices.

Next we discuss a case study of a particular realization of SDP –dynamic day-ahead time-dependent
pricing; the model considerations for it, system architecture, HCI design aspects and results from a field
trail.

9 Case Study of SDP: A Trial of Day-ahead TDP
While pricing algorithms are essential to SDP research, in practice such algorithms must be able to function
within an ISP network. In this section, we discuss the design and results of a trial of Section 6.4’s day-ahead
time-dependent pricing (TDP) to highlight some ways in which implementability concerns can influence the
development of pricing algorithms. We examine some important system and user interface design principles
that were used in developing the prototype of this system, called TUBE, and finally present some trial results
that illustrate how these elements can come together in practice. While some SDP trials have been conducted
in the past, e.g., the Berkeley INDEX project in the 1990s [128], the design of this TUBE pilot trial illustrates
the way new factors such as smartphones’ computing capabilities affect SDP’s feasibility.

9.1 Model Considerations
Most forms of dynamic pricing, in which prices must be determined in (near) real-time, require the prices to
adapt based on users’ behavior. For instance, users’ perception of the prices offered may change over time,
and demographically distinct user populations may react differently to the same set of prices (e.g., teenagers



versus businessmen). Offering dynamic pricing thus requires that the ISP first estimate its users’ behavior
and then use this to inform its choice of prices. In the case of time-dependent pricing, such estimates are
particularly important. The basic philosophy of TDP is that by offering lower prices at less congested times,
an ISP incentivizes users to shift some of their usage from more expensive, congested times to less congested
times. Users’ demand over the day is thus even-ed out, with peak usage decreasing; this decrease in peak
usage then reduces ISPs’ need to over-provision capacity for their peak demand. While lower prices would
effectively encourage users to shift their demand, thus reducing costs, ISPs would also lose a large amount
of revenue if the prices were too low. Moreover, users might shift their usage too much, and end up creating
a new peak period during the discounted times.

In practice, these estimates of user behavior must take into account the available information that the
ISP can collect from its users. For instance, TUBE’s TDP algorithms, discussed in Section 6.4, use only
aggregate usage data, that is, the total usage volume on the network at different times, in order to estimate
user behavior and calculate the prices. This approach has the following benefits:

• Scalability: Since only aggregate usage is recorded and used in the algorithms [48], we can scale up
the user behavior and price computations to multiple users and multiple applications. The algorithm
complexity does not increase with the number of users contributing to the aggregate usage totals.

• User privacy: The amount of traffic that an individual consumes for different applications can be
sensitive information (e.g., unusually large amounts of streaming video might reveal a movie buff).
The TUBE algorithm does not consider application-specific usage, so the ISP need not receive or
record such sensitive information.

• Utility function estimation: Utility function estimation is usually a hard problem. When temporal con-
siderations are involved, it can potentially become even more complicated, as the utility of consuming
data at any given time depends on the prices offered at all times of the day.

• Empirical observations: Instead of using utility functions, we can model users’ willingness to shift
their demand from one period to another, depending on the time elapsed between these periods and
the price difference. Such usage shifts can be directly observed by comparing the amount used at
different times and prices, and the model can then adapt as these observed shifts change over time.

By following these principles, we develop a scalable price calculation and user behavior estimation algorithm
(see Section 6.4 and [48] for details) that can be feasibly deployed in a real system.

9.2 System Design
A core feature of SDP, and time-dependent pricing in particular, is that it involves both end users and ISPs.
Thus, the system design must have components both on ISP servers and on user devices. Figure 8 shows this
division of functionality and the requisite communication channels between the user device and ISP server.
In order to make the system practical, we follow three basic principles:

• Functionality separation: Users and ISPs have different roles in an SDP system: while users respond
to the prices offered, an ISP must set the prices. TUBE utilizes individual user devices to facilitate not
only displaying prices to users, but also helping them respond to the prices offered via an autopilot
mode that automatically schedules apps to lower price periods. Since such computations need not
involve the ISP, this functionality is located on users’ devices.



User Device 

Autopilot 

Youtube 

Flipboard 
Magazine 

Netflix 

Apple 
App Store 

Usage 
Monitor 

User GUI 

ISP Server 

Aggregate 
Traffic  

Measurement 

Allow or Block 

Price  
Information 

Application Traffic 

Secure Connection 

User 
Behavior 
Estimation 

Price 
optimizer 

!"#$%&
'(%)*+,-.&

/00&
1+2%)34%(&

Figure 8: User-ISP functionality division and feedback communication in time-dependent pricing.

• A feedback loop: In order to successfully adapt prices to user behavior, the ISP needs to monitor usage
in its network.23 Thus, users must periodically send their usage to the ISP server. Similarly, the ISP
must periodically update the prices displayed on users’ devices as new prices are calculated. This
mutual communication forms a feedback loop.

• An open API: An ISP’s users may have many different devices with different operating systems–
for instance, iOS, Android, and Windows phones and tablets. Each of these devices must therefore
communicate with the ISP server. To ensure consistency across different device types, TUBE offers
an open API for transmission of usage and prices between the ISP and users.

9.3 User Interfaces
SDP depends not just on pricing algorithms and system design, but ultimately on whether users respond to
the prices offered. Thus, careful user interface design is necessary to ensure that users understand the prices
being offered and to encourage them to respond accordingly. In some cases, interface design goes beyond
displaying prices; users’ devices can automatically adjust data usage based on the prices offered and user
preferences. TUBE’s user interface components can be grouped into three different categories:

• Information displays: Since TUBE offers day-ahead TDP, the prices for the next day should be dis-
played to users. But users may also find it helpful to track their spending by viewing how much usage
they have consumed in the past. TUBE thus shows users both the price and usage for several past
hours, so that users can understand how they usually respond to the prices offered and how this affects
their spending on data. TUBE also shows the amount used for the five apps with the highest data
usage, so that users can see which applications consume more data. Figure 9abc shows some sample
screenshots of these features.

• Out-of-app indicators: Most users find checking a mobile application too onerous for keeping track
of current or future prices. A more convenient way to display the prices is to show a color-coded
price indicator on the device home screen to (qualitatively) signal the current price to the user, without

23Such usage monitoring also allows the ISP to calculate the amount spent by individual users.



(a) Price display. (b) Price and usage. (c) Top 5 applications. (d) App scheduling.

Figure 9: Screenshots of user interfaces for time-dependent pricing. Users can (a) check the prices for next
24 hours, (b) view their price and usage history, (c) identify the top 5 apps by bandwidth usage, and (d)
schedule their apps at different times of the day.

requiring any special action on the user’s part. Such color-coding can also be helpful for visualizing
the future prices within the app, so that users can quickly decide whether to wait for lower prices.

• Automation: Many users prefer not to manually schedule different applications due to the complica-
tions involved in tracking future prices. TUBE thus offers an autopilot mode that takes into account
users’ delay sensitivity for different applications and monthly budget to automatically schedule some
apps to lower-price times. The autopilot mode utilizes users’ past spending to forecast how much the
user will spend over a month. If this amount exceeds a user’s monthly budget, delay-tolerant apps
can be scheduled to lower-price periods; as users’ spending further exceeds their budget, apps with
lower delay tolerances will be scheduled to lower-price periods. However, such algorithms need to
be optimized so as to be as non-intrusive as possible; in user interviews after the TUBE trial, many
trial participants expressed concern over an automated algorithm controlling their data usage [112].
One way to accommodate these concerns is to allow users to override the autopilot scheduling and to
configure algorithm parameters, e.g., changing the delay tolerances of different apps (Figure 9d).

9.4 Trial Results
Recently, the authors of the present work developed a prototype of the above pricing algorithms, system
components, and user interfaces and trial-ed it with 50 end users [48]. We here present some results from this
TUBE trial, which illustrate both the importance of user interface design and the effectiveness of optimized
TDP.

An initial phase of the TUBE trial offered alternating high (10% discount) and low (40% discount) time-
dependent prices in different hours. After two weeks of following the high-low-low price pattern, the prices
changed, repeating the pattern of a 9% discount at midnight, followed by 28%, 30%, 28%, 9%, and 30%
discounts in subsequent hours. The home screen price indicator was green for discounts over 30%, orange
for 10–29% discounts, and red for discounts below 10%.

Usage in different hours with these pricing patterns can be compared to assess the effect of the indicator
color and numerical discount: hours deemed as Type 1 periods offered a 10% discount in the first stage of the



Table 1: Period types in the color experiment.

Type Periods First Stage Second Stage
Color Disc. Color Disc.

1 2, 8, 14, 20 Orange 10% Orange 28%
2 3, 6, . . . , 24 Orange 10% Green 30%
3 5, 11, 17, 23 Orange 10% Orange 9%
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Figure 10: Average percent changes in usage for the period types in Table 1. Users’ usage behavior is (a)
not affected by the prices when only the numerical discounts, but not the indicator color changes. When (b)
both the color and numerical discount change, users increase their usage behavior more in low-price periods.

experiment and 28% discount in the second stage, with the indicator remaining orange despite this increase
in the discount. Type 2 periods offered a 10% (orange) discount in the first stage and 30% (green) discount
in the second stage, while Type 3 periods offered a 10% discount in the first and 9% discount in the second
stage of the experiment (the indicator was orange in both periods). Table 1 summarizes the combinations of
discounts and colors used in the two stages that characterize each type of period.

To analyze the trial results, the percentage changes in usage for each type of period were computed, rel-
ative to usage without time-dependent prices. These changes showed that users responded more to changes
in the price indicator color than changes in the numeric value of the TDP discounts. In post-trial interviews,
nearly all of the trial participants indicated that they relied on the price indicator colors to know the current
prices, rather than opening the TUBE app.

Figure 10 compares the usage changes observed in different period types. Each data point represents one
user’s average change in each period type, with the size of the data point indicating the volume of usage in the
second stage of the experiment. The reference line represents equal changes in both period types considered.
Figure 10a shows the average change in usage for each user in Type 1 periods versus Type 3 periods. For
both period types, the color did not change, but the discount in Type 1 periods increased significantly. Thus,
if users had reacted to the numerical prices, usage should increase in Type 1 and decrease in Type 3 periods:
users’ data points should lie above the reference line. Figure 10a shows that this is the case with only half of
the users. Since the indicator color did not change, users were mostly agnostic to the numerical values of the
discounts. Figure 10b plots the average change in usage in Type 2 versus Type 1 periods. The discounts in
both periods increased by comparable amounts, but the indicator color changed from orange to green only
in Type 2 periods. Most users’ data points lie above the reference line, indicating that usage increased more
(or decreased less) in Type 2 as compared to Type 1 periods. Thus, users responded to the indicator color
despite the comparable numerical discounts. In fact, 80% of our participants admitted to this behavior when
asked in post-trial interviews whether they paid attention to the indicator color, numerical discounts, or both.
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Figure 11: Usage statistics in the TIP (time-independent pricing) and optimized TDP phases of the TUBE
trial. When optimized TDP is offered, (a) the ISP’s peak-to-average ratio generally decreases, while (b) the
average daily traffic per user increases.

The final stages of the trial offered optimized time-dependent prices, with initial user behavior estimates
based on the usage observed in previous stages of the trial with non-optimized prices. The reduction in
peak traffic was measured by the peak-to-average ratio (PAR), i.e., the ratio of usage in the peak period to
average per-period usage, for each day. Comparing the PARs from before and after optimized TDP reveals
that optimized time-dependent prices reduce the peak-to-average ratio from usage before time-dependent
prices were offered (time-independent pricing, or TIP). Moreover, overall usage significantly increased after
TDP was introduced, partially because people used more in the discounted valley periods.

Figure 11a shows the distribution of daily PARs both before and after TDP was introduced. The max-
imum PAR decreases by 30% with TDP, and approximately 20% of the PARs before TDP are larger than
the maximum PAR with TDP. Thus, TDP significantly reduced the peak-to-average ratio, flattening demand
over the day. Moreover, this decrease in PAR is not due to a net loss of traffic. Figure 11b shows the average
per-user daily usage observed before and after TDP. The overall volume of usage after TDP is greater than
that before TDP; in fact, across all users, the average change in usage from TIP to TDP is a 130% increase.
Part of this increase may be due to the time of year–TIP usage was measured from July to September, and the
TDP usage in January. TDP, however, is likely a major factor: the discounts during off-peak periods allowed
users to consume more data while still spending less money and decreasing the PAR. In fact, in post-trial
interviews 30% of the trial participants admitted to consciously using more data in the heavily discounted
periods, with one explicitly comparing the situation to shopping at a clothing sale in department stores.

10 20 Open Questions and Future Directions
Current trends and future directions in smart pricing practices aim to make proposed pricing plans eco-
nomically viable. For instance, substantial research has been done on day-ahead pricing, including the
development of carefully designed user interfaces to display price and usage data as shown in Figure 9. In-
corporating human factors into the engineering and design phase along with economic models can provide
a holistic approach in solving the challenges of network congestion.

In addition to the pricing plans proposed above, new pricing plans have recently been proposed that have
been rarely studied in the academic literature. Some promising directions include the following:



(a) Home screen. (b) Cellular usage per app. (c) Usage locations. (d) Shared usage.

(e) Individual usage. (f) Usage over time. (g) Usage distribution. (h) Usage of devices.

Figure 12: Screenshots of the DataWiz app with shared data plans. A user can add other users or devices to
her shared data plan and can keep track of the shared data usage as well as individual usage. When a user is
requested to be a part of the shared data plan, a push notification is sent to the user and the user can either
accept or reject this invitation.



Shared data plans: AT&T and Verizon in the United States recently introduced shared data plans, in which
several devices share a common data cap. While some studies of shared data plans have been made
[111], the effects of such plans on user behavior, and how such a data cap can be shared fairly and
efficiently among users, remain to be studied in detail.

One practical challenge for users on shared data plans is keeping track of their usage across multiple
devices–while many apps exist to track usage on individual devices; e.g., Onavo Count, My Data
Manager, and DataWiz; none track the usage of multiple devices. In fact, tracking usage on multiple
devices requires not only modifications to user interface design but also integration with a common
server that can send usage information of other user devices to each device on a shared plan. A login
and agreement process is also necessary to ensure that users can see each others’ usage only once both
users have given permission.

Screenshots of a prototype shared data plan app based on the DataWiz usage monitoring application
are shown in Figure 12. The app lets users view their monthly, weekly, and daily usage as compared
to their monthly data cap (Figure 12a), as well as per-app and per-location usage (Figures 12b and
12c). The small pie chart indicator on the top left corner of the phone allows users to quickly see
their monthly usage; the chart is filled according to how much of his or her monthly cap the user has
consumed. In addition to these basic features, users can add and remove other users and devices to
their data plan; if a user is added to someone else’s data plan, the invitation recipient receives a push
notification and can accept or reject the invitation. Upon acceptance, both users may view each other’s
usage over time (Figures 12e and 12f) and on a pie chart (Figure 12g). Users may add multiple devices
to their accounts; each user’s total usage is then the combined usage from all of these devices (Figure
12h). A push notification is sent if a user is removed from a shared data plan.

Fair throttling: Instead of merely charging users more over a certain cap, ISPs may forcibly limit usage by
throttling users to a limited bandwidth rate. However, researchers have still not thoroughly examined
how these bandwidth limits should be set, how they should vary over time, and what their implications
are in terms of fairness across different users.

Heterogeneous networks: Many ISPs are turning to supplementary networks such as WiFi and femtocells
to offload traffic from congested cellular networks. While access to such networks is often free, in the
future they may wish to implement more systematic access pricing to influence the adoption of such
technologies and distribution of the user population across complementary networks like WiFi and
3G [59, 62].

Sponsored content: A major question in pricing is “whom to charge” for delivering traffic. In a two-sided
pricing model (like in the credit card business) of the Internet, the price of connectivity is shared
between content providers (CPs) and end users (EUs). ISPs become the middle man (or platform)
proving the connectivity between CPs and EUs. This clearing house or data traffic exchange market
would extend the existing 1-800 model of phone-call services in the USA, which charges the callee
rather than the caller. The tradeoffs in the resulting economic benefit between CPs and EUs remains
to be quantified. Intuitively, end-users’ access prices are subsidized by third party sponsors (e.g.,
advertisers, content providers etc.) and the ISPs have an additional source of revenue. Perhaps more
surprisingly, content providers may also stand to gain from two-sided pricing if subsidizing connectiv-
ity to end-users translates into a net revenue gain through a larger amount of consumption. However,
the gain to content providers depends on the extent to which content-provider payment translates into
end-users’ subsidy, and on the demand elasticities of the consumers. The precise gains to the three



entities will therefore depend on the respective bargaining powers stemming from their contributions
and price sensitivities.

Another special case of sponsored content includes zero-rating and 1-800 reverse billing policies for
data traffic. Under zero-rating, an ISP makes certain types of application traffic available to the users
for free. This kind of policy, although contentious from a net neutrality viewpoint, is a major step in
app-based pricing and has been practiced in some parts of Europe (e.g., Mobistar introduced a ‘zero-
rated’ plan for Facebook, Twitter, and Netlog). Understanding the impact of such pricing plans on the
network ecosystem and its neutrality are important active research directions in the area of network
economics.

10.1 Static Pricing
Usage-based static pricing has traditionally been offered by ISPs around the world, and is in some sense the
simplest and least controversial form of SDP. Yet even simple caps on monthly usage require a means to
communicate those caps to users and, on the ISP side, accounting infrastructure to keep track of users’ re-
maining quotas. Pricing plans like token bucket pricing or negotiated contracts require even more interaction
with end users, leading to questions that include:

1. How can users use their quota efficiently and keep track of a monthly usage quota?

2. If users choose different QoS levels or times to receive better QoS, e.g., in Paris metro or token bucket
pricing, how can they do so without much technical knowledge of what “QoS” means? How can the
ISP’s infrastructure keep track of users’ choices and offer the appropriate QoS?

3. Without such technical knowledge, how can users negotiate contracts (e.g., cumulus pricing) with
ISPs? How can ISPs enforce these contracts?

4. If the ISP offered some form of personalized (e.g., app-based) pricing, how would it measure the usage
of different applications for each user? Where in the network should such measurements take place
(i.e., client devices or the network core)? From a regulatory perspective, does this violate privacy or
network neutrality concerns?

5. How will users share the monthly data quotas imposed by shared data plans among different devices?

10.2 Dynamic Pricing
While static pricing offers some challenges in communicating between ISPs and end users, dynamic pricing
introduces even more complications as the user must be informed of changes in price. Deployment questions
unique to dynamic pricing include:

6. How often should the prices change? Should they change with the network congestion, or should they
change only after a fixed time interval (e.g., one hour)?

7. Should users be told the prices in advance? Will they accept or respond to prices that change in real
time?

8. The answer to the previous question can be more broadly phrased as follows–how can users be ap-
propriately informed of the changing prices (e.g., with an app on their mobile devices)? What kind of
design is optimal for such an app? Going further, what mechanisms can be developed to help users
adjust their behavior in response to the prices?



9. In the context of mobile data, network bottlenecks are generally highly location-dependent. Should
the prices vary by location as well as by time? How will this affect users who move from one location
to another?

10. How can the prices be computed efficiently? Should this computation be done online or offline? What
usage monitoring must take place, and how real time does it need to be?

11. In addition to efficient usage monitoring, how can the ISP anticipate user reactions to the prices so
as to set the “optimal” prices? How can these change over time? Does the measurement process
adequately protect user privacy?

12. Should dynamic pricing be coupled to QoS? If so, how?

10.3 Sponsored Content
Sponsored content pricing, in which content providers and advertisers subsidize users’ spending on data, has
not been widely deployed, partially due to the network neutrality implications of content provider subsidies.
As a relatively new type of pricing, many questions remain to be answered:

13. What is the preferred mode of “sponsoring” in sponsored content/access? Should it be based on
increasing the user’s data cap, monetary discounts, or improved speed (e.g., less throttling)?

14. Will content providers sponsor content on a per-transaction basis? If so, how should these transactions
be metered, and how much should they charge?

15. How can ISPs measure the cost of each transaction and develop accounting systems to keep track of
content providers’ sponsorship?

16. Does the idea of “sponsored content” violate network neutrality? Or can it be structured in a net-
neutral way, e.g., sponsoring some data usage but not specifying the application?

10.4 Fair Throttling and Heterogeneous Networks
Other solutions to network congestion that do not explicitly use SDP include fair throttling and deployment
of heterogeneous networks to offload traffic. Fair throttling has not been widely deployed in practice–while
many ISPs do throttle users who exceed a certain usage cap, such measures are fairly crude and do not take
into account users’ full profiles. More sophisticated throttling, e.g., Comcast’s throttling of Netflix traffic
in 2007, has been controversial. In contrast, many ISPs have begun offering WiFi hotspots, but it remains
unclear how effective they are in relieving congestion on mobile networks. Thus, interesting theoretical and
implementation questions remain for both these types of pricing, including the following:

17. What criteria should the ISP consider when performing “fair” throttling? Does measuring these criteria
violate user privacy or network neutrality (e.g., throttling based on the usage of specific application
types)?

18. Should users be directly involved in prioritizing different types of traffic? How can their preferences
be incorporated into the throttling algorithm without the act of declaring such preferences becoming
onerous to the user?



19. How much traffic can be offloaded to other heterogeneous networks (e.g., 4G traffic to WiFi)? How
cost effective is deploying such networks as a solution to network congestion? How can ISPs estimate
the monetary and spectral benefits achieved through such traffic offloading or demand shifting?

20. If ISPs were to charge for bundled access to supplementary networks like WiFi hotspots, how would
such pricing plans affect users’ adoption and the overall network congestion?

These 20 questions are only some of the key questions that arise in deploying SDP and can help re-
searchers identify interesting topics for exploration. In the coming years, as the Internet evolves further,
answering these questions and others that emerge will help determine how we access (and pay for) the
Internet in a highly connected, data-driven world.

11 Exercises
1. Nash Bargaining

Consider a single access link and suppose that its bandwidth capacity C is shared by n users. Let xi
denote the amount of bandwidth received by each user i = 1, 2, . . . , n, and suppose for simplicity that
each user receives utility xi from xi amount of bandwidth. Suppose that the ISP allocates bandwidth
to users so as to maximize

n∏
i=1

xi s.t.

n∑
i=1

xi ≤ C. (6)

Show that the resulting allocation {x∗i } satisfies the four Nash bargaining axioms presented in Section
6.2.

2. Time-of-Day Smart Grid Pricing

Taken from M. Chiang, Networked Life: 20 Questions and Answers, Cambridge University Press,
2012.

Smart grid electricity providers often set time-dependent prices for energy usage. This problem con-
siders a simplified example with two periods, the day-time and the night-time. The provider can set
different prices for the two periods, and wishes to shift some night usage to the day. The energy
provider always offers the full price during the night, and offers a reward of $p/kWh during the day.

Suppose that with uniform (not time-dependent) prices, customers vacuum at night, using 0.2 kWh,
and also watch TV, using 0.5 kWh, and do laundry, using 2 kWh. During the day, customers use 1
kWh. The probability of users shifting vacuum usage from the night to the day is

1− exp

(
− p

pV

)
, (7)

where pV = 2, and the probability of shifting laundry to the daytime is

1− exp

(
− p

pL

)
, (8)

where pL = 3. Users never shift their TV watching from the night to the day.

Suppose that the provider has a capacity of 2 kWh during the night and 1.5 kWh during the day. The
marginal cost of exceeding this capacity is $1/kWh. Assume that energy costs nothing to produce
until the capacity is exceeded.
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Figure 13: Illustration of equilibrium in PMP.

(a) Compute the expected amount of vacuum and laundry energy usage (in kWh) that is shifted from
the night to the day, as a function of p.

(b) Find (to the nearest cent) the reward p which maximizes the energy provider’s profit.
(c) Suppose that if vacuum or laundry usage is shifted from the night to the day, it is shifted by 12

hours. Compute the expected time shifted of vacuum and laundry using p = p∗, the optimal
reward found above.

3. Paris Metro Pricing

Taken from M. Chiang, Networked Life: 20 Questions and Answers, Cambridge University Press,
2012.

Consider a metro system where two kinds of services are provided: service class 1 and service class
2. Let p1, p2 be the one-off fees charged per user when accessing service classes 1 and 2 respectively.
Suppose each user is characterized by a valuation parameter θ ∈ [0, 1] such that its utility of using
service class i is

Uθ(i) = (V − θK(Qi, Ci))− pi,
where V is the maximum utility of accessing the service, K(Qi, Ci) measures the amount of con-
gestion of service class i, given Qi ≥ 0 as the proportion of users accessing service class i (with∑
iQi = 1), and Ci ≥ 0 is the proportion of capacity allocated to service class i (with

∑
i Ci = 1).

At the equilibrium, i.e., no user switches from his selection, Uθ(i) is merely a linear function of θ.
Suppose the equilibrium is illustrated as in Figure 13.

Let θ1 be the θ of the user who is indifferent to joining the first service class or opting out of all the
services, let θ2 be that of the user who is indifferent to joining the first service class or the second
service class, and let F (θ) be the cumulative distribution function of θ.



(a) Show that

Q1 =F (θ1)− F (θ2),

Q2 =F (θ2),

V − p1 =θ1K(Q1, C1),

p1 − p2 =θ2(K(Q2, C2)−K(Q1, C1)).

(b) Assume that θ is uniformly distributed, i.e., F (θ) = θ, and that the congestion function is defined
as

K(Q,C) =
Q

C
.

Solve for θ1 and θ2 as functions of V , p1, and p2.

(Hint: Try p1−p2
V−p1 .)

(For details, see C. K. Chau, Q. Wang, and D. M. Chiu, “On the Viability of Paris Metro Pricing for
Communication and Service Networks,” Proc. IEEE INFOCOM, 2010.)

4. Two-Sided Pricing

Taken from M. Chiang, Networked Life: 20 Questions and Answers, Cambridge University Press,
2012.

Suppose an ISP charges a content provider (CP) the usage price hCP and flat price gCP and charges
an end user (EU) the usage price hEU and flat price gEU . For simplicity, we assume zero flat prices
(gCP = gEU = 0). Let µ be the unit cost of provisioning capacity. The demand functions of the CP
and EU, denoted as DCP and DEU respectively, are given as follows:

DEU (hEU ) =

{
xEU,max(1− hEU

hEU,max
) , if 0 ≤ hEU ≤ hEU,max

0, , if hEU > hEU,max

DCP (hCP ) =

{
xCP,max(1− hCP

hCP,max
) , if 0 ≤ hCP ≤ hCP,max

0, , if hCP > hCP,max.

The parameters are specified as follows:

hCP,max = 2.0µ,

hEU,max = 1.5µ,

xCP,max = 1.0,

xEU,max = 2.0.



The ISP maximizes its profit by solving the following maximization problem

maximize (hCP + hEU − µ)x
subject to x ≤ min{DCP (hCP ), DEU (hEU )}
variables x ≥ 0, hCP ≥ 0, hEU ≥ 0.

(12)

Find the optimal x?, h?CP , h
?
EU .

5. Monitoring Mobile Data Usage

Many commercial mobile applications have been developed to help users keep track of their mobile
data usage. Some examples include 3GWatchdog Pro (Android), DataWiz (iOS and Android), My-
DataManager (Android), and Onavo Count (Android and iOS).

(a) Visit two or three app websites and list their features (e.g., showing usage by application, fore-
casting future usage, alerts when you approach your monthly data quota). Are there any signifi-
cant differences between the apps? Can you identify any consistent differences between iOS and
Android apps?

(b) What visual elements are used in the app designs? For instance, do the apps use bars or pie
charts to represent usage? How are these displays different on different apps?

(c) Based on your answers to the above questions, try to design your own app for tracking mobile
data usage. What screens would you implement? What features would you offer?

12 Supplementary Materials
As a part of the supplementary reading materials for the chapter, students are encouraged to refer to the
following materials:

• Slides on Time-dependent Usage-based pricing engineering (TUBE) and shared data plans.

• Chapter 12 from M. Chiang’s book
(http://www.amazon.com/Networked-Life-20-Questions-Answers/dp/1107024943) [23].

• Lecture notes, slides and homework questions on SDP from ELE 381
(http://scenic.princeton.edu/network20q/).

• Course videos on SDP (Coursera material available at https://www.coursera.org/course/friendsmoneybytes;
videos available at http://www.youtube.com/watch?v=MMl fZypX0w,
http://www.youtube.com/watch?v=N2oM0ISs0nY, http://www.youtube.com/watch?v=v uHP4SNKGo,
http://www.youtube.com/watch?v=21KlcErIiHc) [2].

• Demo videos related to the DataMi project (http://scenic.princeton.edu/datami/) [100].

• Free DataWiz iPhone and Android app for usage monitoring
(download links at http://scenic.princeton.edu/datawiz/) [101].

• Research papers, surveys, and white papers from SDP workshops
(available at http://scenic.princeton.edu/SDP2012/program.html) [99].
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Figure 14: Prepaid and postpaid mobile broadband data plans around the world (data from 2011). Data were
taken from operator websites as well as [3, 6, 24, 31, 37, 58, 60, 72, 82, 91, 93, 122–124, 126, 130, 135].

A Data Plans around the World
In most countries, the dominant forms of mobile data pricing are still usage-based or tiered. However,
the actual cost of mobile data can vary greatly from country to country, depending on such factors as the
country’s network infrastructure, market competition, and population density. One common distinction is
between pre- and postpaid plans.24 Castells et al. [13] found a strong correlation between the availability
of prepaid plans for voice calls and adoption rates of mobile telephone subscribers, which is corroborated
by Hauge et al. [51]. In this Appendix, we provide an overview of prepaid and postpaid plan adoption in
different parts of the world and its relationship to consumer market demographics.

Figure 14 shows whether prepaid or postpaid plans are the dominant form of data plans in several coun-
tries of the world, as of 2011. To determine this data, we examined the standard mobile subscriptions for the
largest mobile operator in each country and plotted the monthly cost (in $ after accounting for purchasing
power parity) of 1GB of data usage. We note that the data plans in different countries have different broad-
band caps, which are not reflected in the graph, but may be found in [60]. The cost of 1GB of data/month
has been plotted against the number of mobile broadband subscribers in each country; we observe that there
is a large variation in cost. Additionally, we see that the countries of Africa (e.g., Kenya, South Africa),
the Middle East (e.g., Turkey, Egypt), India and China tend to prefer prepaid plans, while postpaid plans
dominate in Europe and the Americas. There is a weakly positive correlation between the price for mobile
data and the number of broadband subscribers in the country.

Figure 15 more explicitly shows the correlation between prepaid mobile broadband data plans and lower
per capita gross national incomes (GNI): we see that countries with a lower GNI per capita tend to have
prepaid plans as the dominant subscription mode, with the exception of Australia. Moreover, two of the
three countries offering both pre- and postpaid plans (Italy and Vietnam) have GNI per capita below the

24Prepaid plans are those in which a consumer pays for his/her data usage beforehand, while for postpaid plans, a consumer is billed
for his/her monthly usage at the end of the billing cycle.
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wealthiest 9 countries. Wealthier countries tend to have lower prices for mobile data, even accounting for
purchasing power parity. In lower-GNI countries, it is possible that only a wealthy subset who can afford
higher prices generally purchase mobile data plans; another explanation is that these countries have lower
investment costs due to their relative wealth.

Infrastructure development is also related to population density: in denser countries, networks need to
cover a smaller geographical area to reach the same number of people, resulting in lower investment costs.
In the rural United States, small carriers often cite wireline backhaul over long distances as a major source
of wireless network costs [1]. Figure 16 shows a negative correlation between population density and the
price for 1GB of mobile data, consistent with our hypothesis that denser countries have lower infrastructure
costs. Prepaid data plans are somewhat more popular in less dense countries, with India a notable exception:
83% of countries with prepaid plans have lower population density than 36% of countries with high popu-
lation density and postpaid data plans. These countries also tended to have lower GNIs, which along with
their population density suggest that their network infrastructure is less comprehensive than that of denser,
wealthier countries.
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[108] SEN, S., GUÉRIN, R., AND HOSANAGAR, K. Shared versus separate networks: the impact of
reprovisioning. In Proceedings of the 2009 workshop on Re-architecting the internet (2009), ReArch
’09, pp. 73–78.

[109] SEN, S., GUERIN, R., AND HOSANAGAR, K. Functionality-rich versus minimalist platforms: a
two-sided market analysis. SIGCOMM Computer Communications Review 41, 5 (Oct. 2011), 36–43.
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