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Abstract—To alleviate the congestion caused by rapid growth
in demand for mobile data, ISPs have begun encouraging users to
offload some of their traffic onto a supplementary, better quality
network technology, e.g., offloading from 3G or 4G to WiFi
and femtocells. With the growing popularity of such offerings, a
deeper understanding of the underlying economic principles and
their impact on technology adoption is necessary. To this end, we
develop a model for user adoption of a base wireless technology
and a bundle of the base plus a supplementary technology. In
our model, individual users make their adoption decisions based
on several factors, including the technologies’ intrinsic qualities,
throughput degradation due to congestion externalities from
other subscribers, and the flat access rates that an ISP charges.
We study the adoption dynamics and show that they converge to
a unique equilibrium for a given set of exogenously determined
system parameters. In particular, we characterize the occurrence
of interesting adoption behaviors, including a possible decrease
in the adoption of the supplementary technology as its coverage
increases. Similar behaviors occur at an ISP’s profit-maximizing
prices and the optimal coverage area for the supplementary
technology. To account for the potential benefits from offloading
in practice, we collect 3G and WiFi usage and location data
from twenty mobile users. We then use this data to numerically
investigate the profit-maximizing adoption levels when an ISP
accounts for its cost of deploying the supplemental technology
and savings from offloading traffic onto this technology.

I. INTRODUCTION

Internet service providers (ISPs) have recently begun to
experience the effects of a projected 78% annual growth rate in
mobile data demand over the next five years [1]. Their existing
networks are increasingly unable to accommodate this growth,
leading ISPs to search for ways to curb network congestion
without hurting their profit margins [2]. For instance, Verizon
now offers femtocells in order to supplement its 4G network
capacity [3], while AT&T has deployed WiFi hotspots in New
York to manage persistent 3G congestion [4]. Though AT&T’s
WiFi is currently free, as mobile demand keeps growing, ISPs
may soon begin to charge consumers for access to these sup-
plemental networks [5]. Some ISPs, in fact, have already begun
to do so: for instance, T-Mobile and Virgin Mobile respectively
charge their subscribers an extra $20 and $15 a month for
WiFi access [6], [7]. Given these developments, ISPs will
soon require economic models that help them understand how
to price access to such supplementary technologies and the
implications of those pricing decisions.

We develop an analytical framework to understand user
adoption decisions between a base technology and a bundled

offering of a base plus supplemental technology; users may
adopt the base technology, no technology, or the bundle of both
technologies. We assume that the users have heterogeneous
valuations of each technology’s quality and account for the
negative externalities of congestion effects as a technology’s
adoption increases. We use this framework to identify the
impact of various factors, such as, coverage and pricing on
the equilibrium adoption levels and an ISP’s profit.

Our work is inspired by two research areas: the study of user
technology adoption and that of network offloading. Though
both areas have separately received considerable attention from
economics and networking researchers, our contribution lies in
incorporating user adoption models to study tradeoffs between
deployment costs and offloading benefits for a supplementary
technology. We give analytic conditions under which non-
intuitive adoption behaviors occur and collect usage data to
substantiate our study of an ISP’s profit and savings from
offloading. In particular, our model shows interesting outcomes
in the following scenarios (Section IV-A):

• An ISP wishes to expand its femtocell network to offload
more 4G data traffic, but cannot change its pricing
structure due to exogenous factors, e.g., the presence
of a major competitor. We show that while increasing
femtocell coverage can increase the volume of offloaded
traffic, it may also decrease femtocell adoption: increased
congestion induces some users to drop the bundled fem-
tocell service and only subscribe to 4G. We then specify
conditions under which this decrease occurs even when
the ISP offers revenue-maximizing prices.

• An ISP tries to induce heavy users to leave its 3G network
by increasing the access price. However, by doing so, an
ISP may actually increase user adoption of 3G: increasing
the price of 3G and the 3G + WiFi bundle by the
same amount can lead some users to drop their WiFi
subscriptions and adopt only 3G.

Given these adoption behaviors, we then consider an ISP’s
optimal operating point–at what access prices and coverage
area does an ISP maximize its profit, and what adoption levels
do these correspond to? In determining the profit, we consider
the ISP revenue, the cost of deploying the supplemental
technology, and the ISP’s savings from offloading. Using
empirical data to estimate the offloading benefits, we consider
the following scenarios (Section V-B):
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• Suppose that an ISP seeks to optimize its profit with
respect to femtocell coverage and access prices for its
bundled 4G and femtocell offerings. We show that adop-
tion of both 4G and the 4G + femtocell bundle may
increase when the marginal savings in the amount of
traffic offloaded increases.

• If an ISP maximizes its profit in densely populated areas,
femtocell adoption may increase with deployment costs.

We give an overview of related work on user adoption and
offloading models in Section II. In Section III, we introduce
our model and characterize the equilibrium adoption levels.
Section IV uses these equilibria to derive analytic condi-
tions under which the equilibrium adoption can behave non-
intuitively. We then investigate the equilibrium adoption levels
when the ISP maximizes its profit for a range of different cost
structures (Section V), and conclude the paper in Section VI.
All the proofs, omitted here due to space constraints, can be
found in Appendix A.

II. RELATED WORK

Our work relates to two topics in the literature: technology
adoption dynamics and the economics of offloading traffic to
supplemental networks (e.g., 3G/4G to WiFi/femtocells).

A. Technology Adoption

Many works in economics have studied technology adoption
in various contexts [8]. Katz and Shapiro, for instance, con-
sider competing network technologies with positive externali-
ties in a homogeneous user population [9], while Cabral [10]
presents a diffusion model for a single technology adoption
by users with heterogeneous network valuations. Economides
and Viard [11] provide a static analysis for the adoption of
two complementary technologies with positive externalities
and heterogeneity in user evaluations. Sen, et. al. [12] study
the dynamics of competition between two generic network
technologies with positive network externalities, focusing on
the role of converters in affecting the equilibrium outcomes.

While our work follows these in modeling user heterogene-
ity, it differs in that (a) our model’s dominant externality is the
negative one of network congestion, and (b) we consider a non-
competitive scenario in which the supplementary technology
is bundled with the base technology to relieve its congestion.
We investigate the impact of profit-maximizing pricing and
coverage decisions on equilibrium adoption outcomes.

Another work related to ours is by Ren, Park, and van
der Schaar [13], who consider the market entry and spectrum
sharing decisions of femtocell providers. In contrast, we do
not consider an entrant-incumbent competition scenario; we
model the adoption of a supplementary technology offered by
a monopolist provider and the resulting tradeoffs between the
deployment costs and the savings from offloading. Our work
is thus focused on traffic offloading, unlike [13].

B. Traffic Offloading

Shetty, Parekh and Walrand analyze user adoption of split-
and common-spectrum 4G and femtocell networks and use

their results to study ISP revenue maximization [14]. They
consider the utility of heterogeneous users under both spec-
trum sharing schemes and account for congestion effects with
detailed throughput models. However, [14] does not consider
ISP costs or savings from offloading and relies on numerical
studies due to the complexity of their throughput models.

Other works have also studied traffic offloading, but without
developing an analytical model of user adoption decisions. For
instance, [15] considers the problem of offloading 3G traffic to
WiFi networks, focusing on the implications for ISP revenue.
User adoption is here modeled using given demand functions,
which depend on the prices of 3G and WiFi. Offloading
onto femtocell networks is studied in [16], which considers
ISP revenue and social welfare under flat and usage-based
pricing of both open and closed femtocell networks. Our
work contributes to these efforts by providing a fairly generic
analytical framework, complemented with data collected from
real users, to study the role of economic and technological
decisions on the possible outcomes of the adoption process.

III. TECHNOLOGY ADOPTION MODEL

In this section, we introduce an analytic framework to model
the dynamics of user adoption based on the user’s utility
of subscribing to the base and supplemental technologies,
denoted as Technologies 1 and 2, respectively.1 We consider a
monopolist ISP, i.e., one ISP that does not compete for users
with other service providers. Users may choose to adopt only
the base technology (Technology 1), adopt a bundle of the base
and supplemental technologies (Technologies (1+2)), or to not
adopt either technology. This choice is governed by the value
that each of the above options provides to the user, as described
in Section III-A. Users’ choices evolve over time in response
to changes in the technologies’ adoption and congestion levels;
we analytically formulate these dynamics and characterize the
steady-state equilibrium adoption levels. In Section III-B, we
show that exactly one asymptotically stable equilibrium exists
for any given set of exogenous system parameters.

A. Utility Functions

A user’s value or utility from subscribing to a particular
wireless technology depends on several factors, such as the
intrinsic quality of the technology (e.g. the user’s monetary
valuation of the maximum throughput), the negative external-
ity of congestion (i.e., reduced throughput), and the access
price charged by the service provider. Following [12] and [14],
we account for these factors in defining the utility functions
associated with each technology adoption option. For the two
options, base and the base plus supplementary plans, the
respective utility functions are given by (1) and (2); the utility
of non-adoption is assumed to be zero.

U1(t) = θq1 + T1 (x1 + (1− η)x1+2)− p1 (1)

U1+2(t) = (1− η)
(
θq1 + T1 (x1 + (1− η)x1+2)

)
+ η
(
θq2 + T2 (ηx1+2)

)
− p2 − p1. (2)

1We choose this notation to emphasize that our model is generic, and may
be applied to any market with base and supplementary technologies.
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The above utility functions have three separate value com-
ponents, as we discuss here. The intrinsic qualities (e.g.,
monetary values of the maximum achievable throughput or
delay in the absence of congestion) of Technologies 1 and
2 are denoted by qi, i = 1, 2, and we assume that the
supplemental technology has a higher intrinsic quality than
the base (q2 > q1). For example, femtocells and WiFi typically
deliver much higher maximum throughput than the base 4G
or 3G networks. While the actual throughput, delay, etc. at
a given instant of time can vary depending on such factors
as distance from a cell tower, we assume that users will
make adoption decisions based on the overall quality that they
experience. The valuation of this intrinsic quality is weighted
by a random variable θ ∈ [0, 1] to account for heterogeneity
in users’ valuation of each technology’s quality. Users who
stream a lot of video, for instance, might have a high θ value,
while those who mainly surf the web will have a low θ value.2

We assume that the supplemental technology, Technology
2, has a limited coverage area (e.g., users are not always
within range of a hotspot or a femtocell) that determines the
“coverage factor” η, such that a fraction η of traffic from
adopters of the technology bundle travels over Technology 2’s
network. We assume that users are homogeneous in their usage
volumes and that they are distributed uniformly throughout
the coverage area; then the amount of traffic offloaded to
Technology 2 is proportional to the fraction of users adopting
the technology bundle, multiplied by η. We let x1(t) denote
the fraction of users adopting only Technology 1 at time t and
x1+2(t) the fraction of users adopting both technologies, and
note that x1(t), x1+2(t), and x1(t) + x1+2(t) ∈ [0, 1]. Thus,
the amount of traffic on Technology 1 is x1(t)+(1−η)x1+2(t),
while the amount offloaded to Technology 2 is ηx1+2(t).

We use decreasing functions T1
(
x1(t) + (1 − η)x1+2(t)

)
and T2

(
ηx1+2(t)

)
to represent the throughput degradation as

a function of the traffic volume for Technologies 1 and 2
respectively, normalized to monetary units (e.g., the decrease
in the technologies’ monetary value).3 The wireless service
provider prices the access for the two options at p1 for the
base technology and p1 + p2 for the base plus supplemental
technology bundle (i.e., p2 is the extra price that a user pays
for the bundled option). For notational convenience, the time
argument of x1(t) and x1+2(t) will be assumed from here on
to be implicit in the utility functions (1) and (2).

Given these functions, we can find the threshold value of
θ, θ(1,0), for which users will prefer to adopt Technology 1
(i.e., U1 > 0). Similarly, we can also find the value of θ(1+2,1)

for which Technology 1 users will prefer the bundle of both
Technologies (1+ 2) (i.e., U1+2 > U1 > 0). We note that each
θ threshold is a (time-dependent) function of x1 and x1+2.

The threshold θ(1,0) for preferring Technology 1 occurs

2The exact values of the qi parameters depend on the particular technology
being considered, while the distribution of θ values can be estimated from
established techniques in marketing research, e.g., conjoint analysis [17].

3We note that we limit our model to scenarios in which Technology 2’s
throughput is unaffected by the users on Technology 1, e.g., non-interfering
wireless technologies, as in a split-spectrum 4G and femtocell deployment.

when U1 = 0, i.e.,

θ(1,0) =
p1 − T1(x1 + (1− η)x1+2)

q1
. (3)

The threshold θ(1+2,1) for adopting Technology 2 in addition
to Technology 1 occurs when U1+2 = U1 ≥ 0, i.e.,

θ(1+2,1) ≥
T2 (ηx1+2)− T1 (x1 + (1− η)x1+2)− p2

η

q1 − q2
. (4)

Finally, we solve for the threshold θ(1+2,0) above which users
will prefer to adopt both technologies, rather than have no
connectivity. This occurs when U1+2 = 0, or

θ(1+2,0) =
−(1− η)T1 (x1 + (1− η)x1+2)− ηT2(ηx1+2)

(1− η)q1 + ηq2

+
p2 + p1

(1− η)q1 + ηq2
. (5)

In the remainder of this paper, we take the throughput
degradation functions T1 and T2 to be linear, i.e., Ti(x) =
−γix, i = 1, 2, where γ1 and γ2 are (positive) approximation
constants.4 With the linear T1 and T2, (3-5) become

θ(1,0) =
p1 + γ1(x1 + (1− η)x1+2)

q1
. (6)

θ(1+2,1) =
−ηγ2x1+2 + γ1 (x1 + (1− η)x1+2)− p2

η

q1 − q2
. (7)

θ(1+2,0) =
(1− η)γ1 (x1 + (1− η)x1+2) + η2γ2x1+2

(1− η)q1 + ηq2

+
p2 + p1

(1− η)q1 + ηq2
. (8)

For given adoption levels x1 and x1+2, the ordering of
these threshold values (6-8) determines whether a user of
type θ is willing to adopt a particular technology. Thus,
we can determine the fraction of users H1

(
x1(t), x1+2(t)

)
and H1+2

(
x1(t), x1+2(t)

)
willing to adopt Technology 1 and

Technologies (1 + 2) respectively. In doing so, we recall that
θ ∈ [0, 1]; for instance, if θ(1,0) < 0, all users receive positive
utility from adopting Technology 1. We thus let [·][0,1] denote
the projection onto the [0, 1] interval.5

We first consider the case θ(1,0) < θ(1+2,0), i.e., the
threshold for preferring the base technology to no adoption
is smaller than that of preferring both technologies to no
adoption. We show that θ(1+2,1) > θ(1+2,0); thus, if a user
receives positive utility from Technology 1 and increases it
by adopting Technology 2 as well

(
θ(1,0) < θ(1+2,1) < θ

)
, she

cannot receive negative utility from adopting both technologies(
θ(1,0) < θ(1+2,1) < θ < θ(1+2,0)

)
:

Proposition 1: If θ(1,0) < θ(1+2,0), then θ(1+2,0) <
θ(1+2,1). If θ(1+2,0) < θ(1,0), then θ(1+2,1) < θ(1+2,0).

Thus, if θ(1,0) < θ(1+2,0), the fraction of users H1 will-
ing to adopt Technology 1 equals the fraction for whom

4This assumption is often used in the literature on network technology adop-
tion [13]. In Appendix B, we derive analytical bounds on the approximation
error for typical throughput functions.

5That is, [y][0,1] = y if y ∈ [0, 1], 0 if y < 0, and 1 if y > 1.
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TABLE I
EXPRESSIONS FOR H1 AND H1+2 IN DIFFERENT REGIONS OF (x1, x1+2).

Conditions on θ H1 H1+2

a θ(1+2,0) < θ(1+2,1) < 0 0 1
θ(1+2,1) < θ(1+2,0) < 0

b θ(1,0) < 0 < θ(1+2,1) < 1 θ(1+2,1) 1− θ(1+2,1)

c 0 < θ(1,0) < θ(1+2,1) < 1 θ(1+2,1) − θ(1,0) 1− θ(1+2,1)

d 0 < θ(1,0) < 1 < θ(1+2,1) 1− θ(1,0) 0

e 0 < θ(1+2,0) < 1 < θ(1,0) 0 1− θ(1+2,0)0 < θ(1+2,0) < θ(1,0) < 1
f θ(1,0) < 0 < 1 < θ(1+2,1) 1 0

g 1 < θ(1,0) < θ(1+2,0) 0 0
1 < θ(1+2,0) < θ(1,0)

θ(1, 0) θ(1+2, 0) θ(1+2, 1) 
U1	
  >	
  0	
  

U1	
  +	
  2	
  >	
  U1	
  

U1	
  +	
  2	
  >	
  0	
  

0 1 

Region c 

Technology 1 Adopted 1 + 2 Adopted 

θ(1, 1+2) θ(1+2, 0) θ(1, 0) 
U1	
  +	
  2	
  >	
  U1	
  

U1	
  >	
  0	
  

U1	
  +	
  2	
  >	
  0	
  
Region e 

Technologies 1 + 2 Adopted 

0 1 

Fig. 1. Visualization of θ and H values for regions c and e in Table I.

θ(1+2,1) > θ > θ(1,0), and the fraction of users H1+2 willing
to adopt Technologies (1 + 2) equals the fraction for which
θ > θ(1+2,1). For simplicity, we assume that users’ valuations
θ are uniformly distributed in the interval [0, 1]; then

H1

(
x1, x1+2

)
=
[
θ(1+2,1)

]
[0,1]
−
[
θ(1,0)

]
[0,1]

,

H1+2

(
x1, x1+2

)
= 1−

[
θ(1+2,1)

]
[0,1]

. (9)

If the thresholds are reversed, i.e., θ(1+2,0) < θ(1,0), then we
may use Prop. 1 to derive

H1

(
x1, x1+2

)
= 0, H1+2

(
x1, x1+2

)
= 1−

[
θ(1+2,0)

]
[0,1]

.

(10)
Following standard economic models, we assume a negligible
cost of switching between the adoption choices [12], [13].

By dividing the dynamical space into seven regions, we can
explicitly write out (9 - 10) as in Table I. Figure 1 visually
represents the adoption expressions in two regions, and Fig. 2
uses the θ threshold values (6 - 8) to map them to the adoption
levels x1 and x1+2.6 The user dynamics are then

ẋ1(t) = ρ
[
H1

(
x1(t), x1+2(t)

)
− x1(t)

]
ẋ2(t) = ρ

[
H1+2

(
x1(t), x1+2(t)

)
− x1+2(t)

]
, (11)

where ρ ∈ (0, 1] denotes the rate of adoption. At any time
t, the fraction of users adopting each technology equals the
fraction willing to adopt, less those who have already done so.
Given these dynamics, we now derive the possible equilibrium
points in each region, i.e., the values of x1 and x1+2 for which
H1

(
x1, x1+2

)
= x1 and H1+2

(
x1, x1+2

)
= x1+2 for the

H expressions in Table I. Tables II and III summarize the
expressions for possible equilibria in each region.

6A qualitatively similar figure with the same adjacent regions will be
obtained even for nonlinear T1 and T2.

x1 + 2 

x1  

g 

a 

f 

e 

c b 

d 

θ(1 + 2, 1) = 0 

θ(1 + 2, 1) = 1 

θ(1, 0) = 0 
θ(1, 0) = 1 

θ(1 + 2, 0) = 1 

θ(1 + 2, 0) = 0 

θ(1 + 2, 0) = θ(1, 0) 

Fig. 2. Visualization of Table I’s regions in terms of the adoption levels.

B. Convergence and Stability

We now examine the stability of the equilibrium points in
Tables II and III:7

Proposition 2: Assuming that an equilibrium point exists,
it is asymptotically stable.

While we assume that throughput degradation (T1 and T2)
is linear in the previous section, our stability analysis depends
only on the Jacobian of the dynamics (11) at given adoption
levels (x1, x1+2). Since our only assumption on the slopes γ1
and γ2 of the throughput degradation T1 and T2 is positivity,
the Jacobian expressions are not affected by nonlinear forms
of the Ti. Thus, if T1 and T2 are continuously differentiable
and strictly decreasing, Prop. 2’s conclusion still holds.

In other words, for any set of exogenous parameters val-
ues and initial adoption levels, the adoption dynamics must
converge to some stable equilibrium:

Proposition 3: With the adoption dynamics (11), no peri-
odic orbit can exist: for any initial values x1(0) and x1+2(0),
x1(t) and x1+2(t) converge to an equilibrium point.

Moreover, only one such equilibrium point exists:
Theorem 1: For given values of the system parameters q1,

q2, η, γ1, γ2, p1, and p2, the adoption levels x1(t) and x1+2(t)
converge to a unique, asymptotically stable equilibrium that
does not depend on the initial values x1(0) and x1+2(0).

In the remainder of the paper, we use x1 and x1+2 to denote
the unique equilibrium adoption levels.

IV. ADOPTION BEHAVIORS

In this section, we investigate the dependence of the equilib-
rium adoption on both prices and the coverage factor. Section
IV-A highlights non-intuitive adoption behaviors, such as the
possibility of a decrease in the adoption of both the bundled
technologies and the total adoption level when the coverage
factor of the supplementary technology increases. In Section

7Though the overall fractions of users x1 and x1+2 will not change at
equilibrium, individual users may change their adoption decisions.
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TABLE II
EQUILIBRIUM POINTS (x1x1+2) OF THE DIFFERENT REGIONS IN TABLE I.

(x1, x1+2) Region Constraints

a (0, 1)
p1 + p2 < −(1− η)2γ1 − η2γ2
p2 < η ((1− η)γ1 − ηγ2)

b
(
η((1−η)γ1−ηγ2)−p2
η(q1−q2)−η2(γ1+γ2)

,
p2−ηγ1+η(q1−q2)
η(q1−q2)−η2(γ1+γ2)

) (η (γ1 + γ2)− q1 + q2) p1 + γ1p2 < −ηγ1γ2 + (1− η)γ1 (q1 − q2)
η ((1− η)γ1 − ηγ2) < p2 < η (γ1 + q2 − q1)

c See Table III. See Table III.

d
(
q1−p1
q1+γ1

, 0
)

−γ1 < p1 < q1, p2 + ηγ1p1
q1+γ1

> η
(
q2 − q1 + γ1q1

q1+γ1

)
e

(
0,

(1−η)q1+ηq2−p1−p2
(1−η)q1+ηq2+(1−η)2γ1+η2γ2

) −(1− η)2γ1 − η2γ2 < p1 + p2 < (1− η)q1 + ηq2

η (q2 − q1 − (1− η)γ1 + ηγ2) p1 − (q1 + (1− η)γ1) p2 > η2q1γ2 − η(1− η)γ1q2
f (1, 0) p1 < −γ1, p2 > η (q2 + γ1 − q1)

g (0, 0)
p1 > q1

p2 + p1 > (1− η)q1 + ηq2

TABLE III
EQUILIBRIUM POINTS (x1, x1+2) OF REGION C IN TABLE I.

x1
−ηγ2q1+(1−η)γ1q2+p1(ηγ2−(1−η)γ1+q2−q1)+p2(−(1−η)γ1−q1)/η

−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2)

x1+2
−γ1q2+q1(q1−q2)+p1γ1+p2(γ1+q1)/η
−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2)

Constraints
p1 (ηγ2 − (1− η)γ1 + q2 − q1) + p2 (−(1− η)γ1 − q1) /η < ηγ2q1 − (1− η)γ1q2

p1γ1 + p2 (γ1 + q1) /η < γ1q2 − q1 (q1 − q2)
p1 (ηγ2 + ηγ1 + q2 − q1) + p2γ1 > −ηγ1γ2 + (1− η)γ1 (q1 − q2)

IV-B, we consider the ISP’s revenue maximization problem,
and find that this behavior persists under the optimal prices.8

A. Observations

We first consider the adoption behavior for a range of
coverage factors (η), e.g., Section I’s example of an ISP that
increases its femtocell coverage to offload more traffic from
4G, but cannot change its access prices due to the presence
of a competitor. Figure 3a shows the equilibrium adoption
levels for a set of exogenous system parameters. At large
(> 0.7) values of η, adoption x1+2 of the bundled technologies
decreases with η, even though the coverage area increases. As
η increases, a larger portion of traffic ηx1+2 is offloaded onto
Technology 2, and the resulting increase in congestion can
lower adoption of Technologies (1 + 2). Then depending on
the adoption x1 of Technology 1, the total adoption x1 +x1+2

may increase or decrease as x1+2 decreases. In Fig. 3a, x1 is
positive and increasing, and the total adoption also increases.
Figure 3b shows an example in which x1+2 decreases with η,
but x1 = 0. Thus, x1 + x1+2 = x1+2 and the total adoption
may decrease as the coverage increaes. In fact, x1 is crucial
to the behavior of x1 + x1+2:

Proposition 4: Suppose that no users adopt Technology 1
(x1 = 0), and that some, but not all, adopt both technologies
(x1+2 ∈ (0, 1)). Then x1+2 decreases with η if

(1− η)2γ1q1 + (1− η2)γ1q2 + η(η − 2)γ2q1 − η2γ2q2
+ (p1 + p2) (q2 − q1 − 2(1− η)γ1 + 2ηγ2) < 0. (12)

8In Appendix C, we show that similar behaviors occur when the user
heterogeneity variable θ is non-uniformly distributed.

If some users adopt Technology 1, some adopt both technolo-
gies, and some neither (x1 > 0, x1+2 > 0 and x1+x1+2 < 1),
then total adoption x1 + x1+2 increases with η.

We note that the mathematical condition (12) is decreasing
in ηγ2; Technology 2’s throughput degradation coefficient γ2,
multiplied by the coverage factor η, must be sufficiently high
for x1+2 to decrease. On the other hand, the presence of the
positive (p1 + p2) (q2 − q1) term indicates that if the marginal
difference in the intrinsic quality between the two technologies
(q2 − q1) is large, users may adopt the bundled technologies
even if Technology 2 is very congested.

Another interesting feature of Fig. 3b is the abrupt switch
from all users adopting the base technology to all users
adopting the bundled technologies when η < 0.1. In this
example, the access price p2 of Technology 2 is relatively low,
as is its throughput degradation coefficient γ2 when compared
to the intrinsic quality q2. Thus, as η increases slightly, the
utility of adopting Technologies (1 + 2) increases quickly:
the user need not pay much more for Technology 2, which
provides higher quality service with relatively little throughput
degradation. Thus, many users adopt the supplemental technol-
ogy in addition to the base one. As η grows further to 0.08, the
utility of adopting Technologies (1 + 2) becomes larger than
that of adopting only the base technology, save for those users
who adopt neither technology due to low valuation levels θ.

Finally, we consider adoption behaviors for fixed Technol-
ogy 2 access price p2 and coverage factor η. For instance,
as proposed in the introduction, the ISP may increase the
access price p1 of its base technology in an attempt to induce
heavy users to leave their network. We find that in some cases,
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(a) Adoption as η varies, x1 > 0 for η > 0.7.
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(b) Adoption as η varies, x1 = 0 for η > 0.1.
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(c) Adoption as p1 increases.

Fig. 3. As the supplemental technology’s coverage area η increases, (a) x1+2 decreases for large η, while (b) total adoption may also decrease. As (c) the
base technology’s access price p1 increases, the base technology’s adoption increases. Parameter values are (a) q1 = 200, q2 = 250, γ1 = 50, γ2 = 20,
p1 = 40, p2 = 10; (b) q1 = 100, q2 = 300, γ1 = 50, γ2 = 100, p1 = 40, p2 = 10; and (c) q1 = 200, q2 = 225, γ1 = 150, γ2 = 50, p2 = 30, η = 0.5.

increasing p1 actually increases Technology 1’s adoption x1.
Figure 3c shows an example; we note that though x1 increases,
the total adoption x1 + x1+2 decreases. We can in fact fully
characterize the conditions under which this behavior occurs:

Proposition 5: Suppose that some users adopt Technologies
1 and (1 + 2), while some adopt neither technology (x1 >
0, x1+2 > 0, x1 + x1+2 < 1). Then the base technology’s
adoption x1 increases with the access price p1 if

q2 − q1 < (1− η)γ1 − ηγ2. (13)

Qualitatively, (13) indicates that Technology 1’s adoption
x1 increases with p1 if the quality differential (q2 − q1) from
adoption of Technology 2 is outweighed by the marginal sav-
ings in throughput degradation from adopting only Technology
1 ((1− η)γ1 − ηγ2). As p1 increases, users adopt Technology
1, rather than the bundled Technologies (1 + 2).

B. Revenue Maximization

We now examine the behavior of Technologies (1 + 2)’s
equilibrium adoption x1+2 as the coverage factor η varies
and the ISP chooses prices so as to maximize its revenue
p1 (x1 + x1+2) + p2x1+2. We first use Tables II and III’s ex-
pressions for the equilibrium x1 and x1+2 to find the revenue-
maximizing prices p∗1 and p∗2 at each possible equilibrium, as
shown in Table IV. To emphasize their dependence on price, in
the remainder of this section we use the notation x1

(
p∗1, p

∗
2

)
and x1+2

(
p∗1, p

∗
2

)
to denote the equilibrium adoption levels

given the optimal prices p∗1 and p∗2.
We see from Table IV that the ISP earns non-positive

revenue if it maximizes its revenue at equilibria in regions
a, f, and g. Intuitively, in these regions, all users adopt at least
one technology at the equilibrium (x1+x1+2 = 1 in Table II).
Yet if users’ technology valuations θqi are sufficiently close to
zero due to a small θ value, their utility functions (1) and (2)
will be negative unless the prices are negative. Thus, the ISP
must offer negative prices in order to guarantee full adoption
in these regions. Using Table IV, we prove that revenue is
greatest under partial adoption of both technologies:

Proposition 6: If η is free to vary, its revenue-maximizing
value is η = 1, i.e., full coverage of the supplemental

technology. For any fixed η, if

η
γ2
γ1
≥ (1− η)

q2
q1
, (14)

the revenue-maximizing equilibrium adoption levels lie in
region c of Table I: some users adopt Technology 1, some
adopt Technologies (1 + 2), and some adopt neither tech-
nology

(
x1
(
p∗1, p

∗
2

)
> 0, x1+2

(
p∗1, p

∗
2

)
> 0, x1

(
p∗1, p

∗
2

)
+

x1+2

(
p∗1, p

∗
2

)
< 1

)
. If (14) does not hold, then no users

adopt Technology 1, but some adopt Technologies (1 + 2)(
x1
(
p∗1, p

∗
2

)
= 0. x1+2

(
p∗1, p

∗
2

)
> 0
)
.

The condition in Prop. 6 can be interpreted as stating that
when the quality q1 of Technology 1 is sufficiently high
and the marginal throughput degradation γ1 sufficiently low
relative to Technology 2, then for a large coverage factor η,
some users will adopt Technology 1 at the optimal prices.
However, under these conditions the adoption x1+2

(
p∗1, p

∗
2

)
of Technologies (1 + 2) will decrease, as shown in Fig. 4’s
example.9 As in Fig. 3a, in Fig. 4 the volume of traffic
ηx1+2

(
p∗1, p

∗
2

)
offloaded onto Technology 2 increases with η,

leading some users to adopt only Technology 1. However,
since p∗2 = η (q2 − q1) /2 increases with η (cf. region c in
Table IV), ISP revenue increases with η. Overall adoption
x1
(
p∗1, p

∗
2

)
+ x1+2

(
p∗1, p

∗
2

)
also increases; the increase in

x1
(
p∗1, p

∗
2

)
offsets the decrease in x1+2

(
p∗1, p

∗
2

)
. Formally,

Proposition 7: If (14) holds, then adoption x1+2

(
p∗1, p

∗
2

)
of

Technologies (1 + 2) decreases and total adoption x1
(
p∗1, p

∗
2

)
+

x1+2

(
p∗1, p

∗
2

)
increases with η.

V. OPERATING COSTS AND PROFIT

In addition to considering adoption under revenue maxi-
mization, as in Section IV-B, ISPs must take into account
the savings from offloading traffic and the cost of deploying
the supplemental technology. In this section, we first use
empirical usage data to estimate the amount of traffic that can
be offloaded onto the supplemental technology’s network at
times of peak usage on the base technology. We then use cost
parameters appropriate for a WiFi deployment to investigate
user adoption under ISP profit maximization.

9We note that the overall adoption level in Fig. 4 is low when compared
with those of Fig. 3. With different parameters (e.g. qi and γi values), the
overall adoption levels may change; we use the ones here to reflect current
smartphone penetration rates in the U.S. [18].
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TABLE IV
REVENUE-MAXIMIZING PRICES ASSUMING EQUILIBRIUM ADOPTION LEVELS IN REGIONS A-G (CF. TABLES I-III).

p∗1 p∗2 Revenue

a < − (1− η) γ1 −(1− η)2γ1 − η2γ2 − p1 −(1− η)2γ1 − η2γ2

b∗
−ηγ1γ2+(1− η

2 )(q1−q2)
η(γ1+γ2)−q1+q2

η(q2−q1)
2

η
4
(q1−q2)2+(1−η)γ1(q1−q2)−ηγ1γ2

η(γ1+γ2)+q2−q1

c† q1
2

η(q2−q1)
2

q21ηγ2+q
2
2ηγ1+q

2
1(q2−q1)+ηq1(q1−q2)

2

4(γ1q2+ηγ1γ2+q1(q2−q1+ηγ2−(1−η)γ1))

d q1
2

≥ η
(
q2 − q1 + γ1q1

2(q1+γ1)

)
q21

4(q1+γ1)

e (1−η)q1+ηq2
2

− p2 ≤ p1
(

ηq2+η
2γ2

q1+(1−η)γ1
− η

)
− η2q1γ2−η(1−η)γ1q2

q1+(1−η)γ1
((1−η)q1+ηq2)2

4((1−η)q1+ηq2+(1−η)2γ1+η2γ2)

f −γ1 ≥ η (q2 + γ1 − q1) −γ1

g > q1 ≥ η(q2 − q1) 0

∗If 2(1− η)γ1 − 2ηγ2 > q2 − q1, the revenue-maximizing prices for region b are instead: p∗1 =
(1−η)γ1(−γ1+q1−q2)
η(γ1+γ2)+q2−q1

,

p∗2 = (1− η)γ1 − ηγ2, revenue =
−ηγ1γ2+((1−η)2γ1+η2γ2)(q1−q2)−η((1−η)γ1−ηγ2)2

η(γ1+γ2)+q2−q1

†If ηγ2q1 ≤ (1− η)γ1q2, then at the optimal prices x1 = 0 and the equilibrium lies in region e.
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Fig. 4. Adoption levels for η ∈ [0, 1] and revenue-maximizing prices
(q1 = 50, q2 = 100, γ1 = 50, γ2 = 100). As η increases, total adoption
x1

(
p∗1, p

∗
2

)
+x1+2

(
p∗1, p

∗
2

)
increases, driven by the increase in x1

(
p∗1, p

∗
2

)
.

A. Trial Data

We gather 3G and WiFi usage data from 20 Android
smartphones over six days. Since ISP cost is driven by peak-
hour traffic, we focus on usage when the 3G network is most
heavily utilized [19]. Our goal is twofold: first, to estimate the
fraction of 3G traffic that occurs at this peak time; and second,
to estimate the probability of WiFi access at this time, given
the overall WiFi access probability. We can then estimate the
amount of traffic that will be offloaded to WiFi at the peak
time, given the WiFi adoption and coverage factor.

We implemented a simple data monitoring app and released
it to users in the United States. Figure 5 shows app screenshots;
in each hour, we recorded the volume of 3G and WiFi usage
and WiFi base station IDs. We find that the probability of WiFi
access in the hour of highest 3G usage is 82% of the overall
probability of WiFi access. On average, 55% of 3G traffic
occurs in these peak hours, corroborating existing findings that
3G data usage exhibits severe peaks during the day [19].

B. Optimizing Profit

In addition to its revenue, ISP profit includes its savings
from offloading, less the cost of deploying a supplemental

(a) Hourly 3G and WiFi usage. (b) Location-specific usage.

Fig. 5. Screenshots of our usage monitoring app on the Android platform.

technology.10 Since these parameters depend on the market
conditions, we consider three scenarios: a small city; a large,
sparsely populated city (e.g., in California); and a large, more
densely populated city (e.g., New York or Philadelphia). We
refer to the latter two cities as the “sparse” and “dense” cities.

We model the cost savings introduced by user offloading
as a linear function of the amount offloaded during the peak
hour, i.e., the marginal cost of peak traffic, multiplied by the
amount offloaded [19]. We take this marginal cost to be 1.0
¢/MB in the small city, 1.9 ¢/MB in the sparse city, and 2.9
¢/MB in the dense city; these values are based on AT&T’s and
Verizon’s data plan overage charges in the U.S. From our trial
data, we find that each user consumes on average 1200MB in
each month, with 660MB occurring at peak hours of the day.
As described in the previous section, the probability of peak-
hour WiFi access is 82% of the overall access probability; we

10We assume that the deployment cost of the base technology is independent
of the adoption levels, e.g., an already-deployed 3G network.
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take this overall probability to be the coverage factor η. Thus,
each user offloads (0.82η)(660MB) = 541η MB at the peak
hours over one month. Multiplying by the fraction of users
adopting both technologies and the ¢/MB marginal savings
from offloading, we write the ISP’s monetary savings from
offloading as cWFηx1+2, with cWF = 5.4, 10.6, or 15.8 for
the small, sparse, and dense cities respectively.

We next consider the cost of deploying the supplemental
technology. We assume that the ISP’s access point (AP)
deployment in each type of city is such that the throughput
degradation is the same function of the fraction of users
on Technology 2’s network (i.e., equal γ2 values). In more
densely populated cities, the ISP may utilize a denser AP
deployment in order to accommodate the larger number of
users in the sparse and dense cities. These additional APs
do not increase the geographical coverage area, but rather
accommodate more users within the same area.

We model the cost of deployment as a linear function of η:
cAPη. We thus maximize the ISP’s total profit at equilibrium

p1 (x1 + x1+2) + p2x1+2 + cWFηx1+2 − cAPη (15)

with respect to the optimization variables η, p1, and p2. In the
remainder of the section, we use η∗, p∗1, and p∗2 to denote the
optimal values of η, p1, and p2, respectively; the corresponding
adoption levels are denoted by x∗1 and x∗1+2.

To find cAP, we use parameters appropriate for a WiFi
deployment. We assume that each additional AP increases the
coverage factor η by a fixed amount ∆η and costs the ISP a
fixed amount CAP per month. From [20], we estimate CAP

as a monthly operational cost of $20, plus capital investment
of $1200 spread over 12 months, so that CAP = $120. For
simplicity, we interpret the WiFi access probability η as the
physical area covered by APs, e.g., uniform user mobility. The
cost of covering an area η with APs is then CAPdη/∆ηe ≈
(CAP/∆η) η. Normalizing by the user population, we find that

cAPη =
CAP (Market area)

(AP coverage area) (Market population)
η

=
$120

(AP coverage area) (Population density)
η.

We use population densities of 2000, 5000, and 12000 people
per square mile for the small, sparse, and dense cities respec-
tively. The AP coverage area is assumed to be 0.01 square
miles, (a 130 meter radius), for the small city, 0.005 square
miles for the sparse city, and 0.002 square miles for the dense
city. We then find cAP = 6.2, 4.9, and 11.5 for the small,
sparse, and dense cities respectively.

In Figure 6, we show the adoption levels x∗1 and x∗1+2 at
the ISP’s optimal operating point for a range of cWF and
cAP values, obtained by varying the marginal savings from
offloading and cost of one AP’s deployment. Though some
characteristics persist for all scenarios–for instance, adoption
x∗1+2 of Technologies (1 + 2) increases with the marginal
offloading savings cWF–there are some noticeable differences.
For the small and sparse cities, as cWF increases at small
values, x∗1+2 does not noticeably increase, but adoption x∗1

of Technology 1 does. As cWF increases at larger values,
more Technology 1 users also adopt Technology 2, i.e., x∗1+2

increases and x∗1 decreases for all three cities.
As the marginal cost of deployment cAP increases, the

coverage factor η∗ decreases, as does the adoption x∗1 of
Technology 1. For the small city, this decrease in η∗ induces
behavior similar to that of Fig. 4: as η∗ decreases, adoption
x∗1+2 of Technologies (1 + 2) first increases, then decreases.
A large η∗ implies that the traffic offloaded η∗x∗1+2 is also
large, and the resulting congestion induces some users to adopt
only Technology 1 and leave Technology 2. The same effect
is observed for the sparse and dense cities, without the final
decrease in x∗1+2 for large cAP (small η∗). Thus, in cities with
denser populations, a decrease in coverage due to higher costs
may in fact increase adoption of Technology 2.

Finally, we examine adoption behavior at the profit-
maximizing prices p∗1 and p∗2 for fixed coverage factor η and
cost parameters cAP and cWF. From Fig. 7, we see that as
η increases, adoption x1+2

(
p∗1, p

∗
2

)
of Technologies (1 + 2)

first increases and then decreases. For smaller values of η,
the ISP induces users to adopt Technology 2 and offload
traffic onto this network. As η grows, however, the ISP allows
x1+2

(
p∗1, p

∗
2

)
to decrease. Since a large coverage factor allows

the ISP to charge a high access price p∗2 for Technology 2,
ISP revenue increases, offseting the decrease in savings from
offloading less traffic. We note, however, that this threshold η
value is largest for the dense city at about 80%, and smallest
for the small city at about 64%. This observation is consistent
with the dense city’s larger marginal savings from offloading.

VI. CONCLUSION

In this paper, we develop a model of user adoption for
base and supplemental wireless network technologies that
accounts for both heterogeneity in users’ technology valu-
ations, congestion effects, and pricing decisions. We show
that user adoption converges to a unique, stable equilibrium
point, and derive analytical conditions under which non-
intuitive adoption behaviors occur. We then show that these
may persist when ISPs maximize either their revenue or profit.
To derive a realistic profit model, we use empirical usage data
to characterize an ISP’s savings from offloading traffic to the
supplemental network. We find that the population density
of the ISP’s market can significantly affect the equilibrium
adoption behavior.

Though we use empirical data to realistically study ISP
savings from offloading traffic onto a supplementary network,
our parameters can only approximate true market structures.
Similarly, our user adoption model makes approximating as-
sumptions, one of which is that users’ technology valuations
are uniformly distributed. While many of the reported qual-
itative adoption behaviors are also observed for non-uniform
distributions (cf. Appendix C), more numerical investigations
are needed. We expect that further exploration and validation
of this proposed analytical framework will yield additional
insights into the benefits of congestion alleviation through
offloading in wireless networks.
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Fig. 6. Adoption levels for the profit-maximizing prices and coverage factor (q1 = 50, q2 = 100, γ1 = 25, γ2 = 50) in different scenarios. Nominal cost
parameters are (cWF, cAP) = (5.4, 6.2), (10.6, 4.9) and (15.9, 11.5) for the small, sparse, and dense cities respectively. Qualitatively, the dynamics as cAP

and cWF vary are seen to depend on the user population density.
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Fig. 7. Adoption levels for the profit-maximizing prices and fixed coverage factor (q1 = 50, q2 = 100, γ1 = 25, γ2 = 50) in different scenarios. Nominal
cost parameters are (cWF, cAP) = (5.4, 6.2), (10.6, 4.9) and (15.9, 11.5) for the small, sparse, and dense cities respectively. As η increases past a threshold
value, adoption x1+2

(
p∗1, p

∗
2

)
of Technologies (1 + 2) decreases despite the potential to offload more traffic as x1+2

(
p∗1, p

∗
2

)
increases.
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APPENDIX A
PROOFS

A. Proposition 1

First we suppose that θ1,0 < θ1+2,0. Then using (4) and (5),
the inequality θ1+2,0 < θ1,1+2 is equivalent to

p1 (q1 − q2) >q1T2 (ηx1+2)− η−1p2q1
− q2T1 (x1 + (1− η)x1+2) . (16)

But expanding the inequality θ1,0 < θ1+2,0 using (3) and
(4), we have the exact same inequality. On the other hand,
if θ1+2,0 < θ1,0, then we switch the sign of (16) to show that
θ1+2,0 < θ1,0 implies θ1,1+2 < θ1+2,0.

B. Proposition 2

In regions a, f and g, it is simple to show that the equilibria
are stable: letting x = (x1, x1+2), we denote (11) as ẋ = f(x)
so that

∂f

∂x
=

[
−1 0
0 −1

]
at each equilibrium in regions a, f and g. Since this matrix
is clearly negative definite, the equilibria are asymptotically
stable.

In region b, the Jacobian of the dynamics (11) is[
γ1

q1−q2 − 1 −ηγ2+(1−η)γ1
q1−q2

−γ1
q1−q2

ηγ2−(1−η)γ1
q1−q2 − 1

]
The eigenvalues of this matrix are λ = η γ1+γ2q1−q2 − 1, λ =
−1. Since we assume q1 < q2, both eigenvalues are real and
negative and the equilibrium in region b is stable. Similarly,
in region c the Jacobian has the form[

γ1
q1−q2 −

γ1
q1
− 1 −ηγ2+(1−η)γ1

q1−q2 − (1−η)γ1
q1

−γ1
q1−q2

ηγ2−(1−η)γ1
q1−q2 − 1

]
,

which has eigenvalues λ satisfying

2 (λ+ 1) =
η (γ2 + γ1)

q1 − q2
− γ1
q1
±√(

η (γ2 + γ1)

q1 − q2
− γ1
q1

)2

+
4ηγ1γ2

q1 (q1 − q2)
,

which has solutions λ = η γ2+γ1q1−q2 , −γ1q1 . As both of these are
real and negative, we see that the equilibrium in region c is
asymptotically stable.

Finally, in regions d and e we have the triangular Jacobian
matrices [

−γ1
q1
− 1 −(1−η)γ1

q1

0 −1

]
,[

−1 0
−(1−η)γ1

(1−η)q1+ηq2
−(1−η)2γ1−η2γ2

(1−η)q1+ηq2 − 1

]
.

Since all diagonal entries in these matrices are negative, the
equilibria in both regions are asymptotically stable.

C. Proposition 3

The result follows from Bendixson’s criterion. We can use
the Jacobian expressions in the proof of Prop. 2 to show
that the divergence ∂f1/∂x1 + ∂f2/∂x1+2 of the dynamical
equations (11) is negative in each region. Then Bendixson’s
criterion tells us that no periodic orbits can exist.11 Since
no periodic orbits exist, each trajectory must converge to an
equilibrium point.

D. Theorem 1

The stability of the equilibrium follows from Prop. 2, while
existence of at least one such equilibrium follows from the
boundedness of the xi and the non-existence of a periodic
orbit (Prop. 3). Thus, it remains to show that at most one
equilibrium point can exist.

Suppose that two stable equilibrium points
exist, and consider a bounded neighborhood S of
{x1 ≥ 0, x1+2 ≥ 0, x1 + x1+2 ≤ 1}. We suppose that
the dynamical equations (11) are continuously extended to
all of S for the purposes of the proof, and that no new
equilibria are created. If we consider all trajectories lying
in S, the regions of attraction for both equilibria are open,
connected, and invariant sets, whose boundaries are formed
by trajectories [21]. However, since no periodic orbits exist,
the boundaries must be the boundary of S itself. Then since
S is connected, there exists at least one point in S that is in
neither region of attraction. But this is a contradiction, as the
trajectory starting from this point must approach a compact
limit set.

We note that in the case of linear throughput functions, an
analysis of the existence criteria in Tables II and III yields the
same uniqueness result. We present some details below. In this
discussion, we use the notation

Cb = η (γ1 + γ2) + q2 − q1
Ce = η (q2 − q1)− η(1− η)γ1 + η2γ2

We first consider region a, and show that when paired with
any of regions b - f, the regional equilibrium constraints in
Tables II and III satisfy the corollary:
• Region b: Prices that satisfy both sets of constraints must

satisfy p2 = η ((1− η)γ1 − ηγ2), so that the equilibrium
point in region b (0, 1), which is the equilibrium in region
a.

• Region c: We can rearrange the third inequality of region
c to find that

(p1 + p2) γ1

+ p1 (ηγ2 − (1− η)γ1 + q2 − q1)

≥ −ηγ1γ2 + (1− η)γ1 (q1 − q2) ,

11Bendixson’s criterion relies on Green’s theorem for the vector field f ,
which is typically assumed to be continuously differentiable. In our case, f
is merely piecewise-linear and continuous. However, since we are working
in R2 and f is continuously differentiable almost everywhere, the proof of
Green’s theorem is still valid.
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and then substitute region a’s bound on p1 + p2 to find
that

p1 (ηγ2 − (1− η)γ1 + q2 − q1) ≥
(1− η)2γ21 − η(1− η)γ1γ2 + (1− η)γ1 (q1 − q2) .

Substituting into the first inequality of region c, we find
that

− p2
(

(1− η)γ1 + q1
η

)
≤

(q1 + (1− η)γ1) (ηγ2 − (1− η)γ1) .

Then this inequality must be an equality by the conditions
for region a,and we have p2 = −η2γ2 +η(1−η)γ1, with
p1 + p2 = −(1 − η)2γ1 − η2γ2. Then the equilibrium
point for region c becomes (0, 1), the same as for region
a.

• Region d: We add the first constraint from region a with
the negative of the second constraint from region d to
find that

η

(
q2 − q1 +

γ1 (q1 − p1)

q1 + γ1

)
< −p1 − (1− η)2γ1 − η2γ2,

so that

p1 (q1 + (1− η)γ1) < −γ1q1
(q1 + γ1)

(
η (q1 − q2)− (1− η)2γ1 − η2γ2

)
.

On the other hand, if we add the second constraint from
region a to the negative of the second constraint from
region d, we find that

p1γ1 > γ1q1+

(q2 − q1 + ηγ2 − (1− η)γ1) (q1 + γ1) .

Combining these two constraints on p1, we find that

q2 − q1 + ηγ2 − (1− η)γ1 + γ1q1
q1+γ1

γ1
<

η (q1 − q2)− (1− η)2γ1 − η2γ2 − γ1q1
q1+γ1

q1 + (1− η)γ1
.

Dropping some terms, we find the necessary condition

q1 (q1 + (1− η)γ1)

q1 + γ1
− (1− η) (q1 + (1− η)γ1) <

η (q1 − q2)− (1− η)2γ1 − η2γ2 −
γ1q1
q1 + γ1

.

Rearranging, we find that

(1− η)γ1q1
q1 + γ1

< −ηq2 − η2γ2 < 0,

which is a contradiction.
• Region e: Prices that satisfy both sets of constraints must

satisfy p1 + p2 = −(1 − η)2γ1 − η2p2. But then the
equilibrium point becomes (0, 1) for both regions.

• Region f: Prices satisfying region a’s constraints must
have p2 − ηγ1 ≤ −η2 (γ2 + γ1), while those satisfying

region f’s constraints must have p2−ηγ1 ≥ η (q2 − q1) >
0. Thus, we have a contradiction.

• Region g: Prices satisfying region a’s constraints must
have p1 + p2 ≤ −(1 − η)2γ1 − η2p2 < 0, while those
satisfying region g’s constraints must have p1 + p2 >
(1− η)q1 + ηq2 > 0. Thus, we have a contradiction.

We now consider region b, paired with regions c - g.
• Region c: We first note that the first constraint of region

b and the third constraint of region c must hold with
equality, so that

p2 =− ηγ2 + (1− η) (q1 − q2)−
ηγ2 + ηγ1 + q2 − q1

γ1
p1,

and θ1,0 = 0 at the equilibrium point of region c, and
x1 + x1+2 = 1 at the equilibrium points of both regions.
But then these points are both in region b, and must be
the same.

• Region d: The second constraint of region d yields

p2 ≥ η
(
q2 − q1 +

γ1 (q1 − p1)

q1 + γ1

)
,

while the first constraint of region b yields

p2 ≤− ηγ2 + (1− η) (q1 − q2)−
η (γ1 + γ2)− q1 + q2

γ1
p1.

We thus have the necessary condition

p1

 −ηγ2
1

q1+γ1
+ η (γ1 + γ2)− q1 + q2

γ1


≤ −ηγ2 + q1 − q2 −

ηγ1q1
q1 + γ1

,

which simplifies to p1 ≤ −γ1. Combining this result with
the inequality p1 ≥ −γ1 from region d, we find that
p1 = −γ1 and p2 = η (q2 − q1 + γ1). But under these
conditions, regions b and d have the same equilibrium
point (1, 0).

• Region e: From the first constraint in region b, we have

p2 ≤− ηγ2 + (1− η) (q1 − q2)−
η (γ1 + γ2)− q1 + q2

γ1
p1,

which combined with the constraint p2 ≥ η(1 − η)γ1 −
η2γ2 from region b gives

p1 ≤
γ1

η (γ1 + γ2) + q2 − q1
×

(−η(1− η) (γ1 + γ2) + (1− η) (q1 − q2))

= −(1− η)γ1.

We can then take the second inequality for region e and
find that

p2 ≤
Cep1 − η2q1γ2 + η(1− η)γ1q2

q1 + (1− η)γ1
,
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which may be combined with region e’s first inequality
p2 ≥ −(1− η)2γ1 − η2γ2 − p1 to yield

p1

(
−q1 − (1− η)2γ1 + η (q1 − q2)− η2γ2

q1 + (1− η)γ1

)
≤ (1− η)2γ1 + η2γ2 +

η(1− η)γ1q2 − η2q1γ2
q1 + (1− η)γ1

.

We then substitute p1 ≤ −(1−η)γ1 to find the necessary
condition 0 ≤ 0. But then p1 = −(1 − η)γ1, and p2 =
−(1 − η)2γ1 − η2γ2 + (1 − η)γ1. Then the equilibrium
expressions in regions b and e are the same.

• Region f: We have p2 = η (q2 + γ1 − q1), so that the
equilibrium in region b becomes (1, 0): the same as that
in region f.

• Region g: We see from the constraints on region g that
p2 > η (q2 − q1), so that Cbp1 < −γ1γ2 + γ1 (q1 − q2).
But Cb > 0 and p1 > q1 > 0 from the constraints on
region g, so we have a contradiction.

We next consider region c, paired with regions d - g.
• Region d: We note that the second constraints for regions

c and d imply that

p1γ1 +
p2
η

(q1 + γ1)

= γ1q2 − q1 (q1 − q2) ,

so that the equilibrium point for both regions becomes
the same.

• Region e: The first constraint for region c and the second
constraint for region e imply that both hold with equality.
One can then check that the equilibrium points for both
regions are the same.

• Region f: We first multiply the second constraint for
region c by η and add it to the third constraint, yielding

p1 (ηγ2 + q2 − q1)− p2q1 ≥
− ηγ1 (γ2 + q2) + ((1− η)γ1 + ηq1) (q1 − q2) ,

which since p1 ≤ −γ1 implies the necessary condition

p2 ≤ ηγ1 − η (q1 − q2) .

Combining this with region f’s second constraint, this
inequality holds with equality, and p1 = −γ1. We thus
have the equilibrium point (1, 0) for both regions.

• Region g: We find from the second inequality of region
c that

p2

(
q1 + (1− η)γ1

η

)
≤

γ1q2 − q1 (q1 − q2)− γ1 ((1− η)q1 + ηq2) ,

where we have substituted region g’s second inequality
p2 + p1 ≥ (1− η)q1 + ηq2. From region g’s constraints,
we then find that p2 ≥ η (q2 − q1). Combining this with
the above inequality, we have the necessary condition

η(1− η)γ1 (q2 − q1)− q1 (q1 − q2) ≥
η (q2 − q1) (q1 + (1− η)γ1) ,

which yields 0 ≥ 0. Then this inequality must hold with
equality, so that p2 = η (q2 − q1) and p1 = q1. Then
regions c and g both contain the equilibrium (0, 0).

We now consider region d, paired with regions e - g.
• Region e: The second constraint of region d yields the

inequality

p2 ≥ η
(
q2 − q1 +

γ1 (q1 − p1)

q1 + γ1

)
,

while the second constraint of region e yields

p2 ≤
Cep1 − η2q1γ2 + η(1− η)γ1q2

q1 + (1− η)γ1
.

Thus, we combine these inequalities and simplify to find
the necessary condition

p1

(
Ce

q1 + (1− η)γ1
+

ηγ1
q1 + γ1

)
≥

η (q2 − q1) +
ηγ1q1
q1 + γ1

+

η2q1γ2 − η(1− η)γ1q2
q1 + (1− η)γ1

.

The first constraint in region d yields p1 ≤ q1, which
when combined with the above inequality gives the
necessary condition

q1 (q1 + γ1)
(
η2γ2 − η(1− η)γ1

)
≥

η(1− η)γ1
(
q2 − q1 + η2q1γ2

)
(q1 + γ1)

+ (q1 + γ1)
(
η2q1γ2 − η(1− η)γ1q2

)
,

which simplifies to the inequality 0 ≤ 0. Thus, the
previous inequalities must all hold with equality, so that
p1 = q1 and p2 = η (q2 − q1). But then the equilibrium
points in regions d and e are both (0, 0).

• Region f: We must have p1 = −γ1, so that the equilib-
rium points in both regions are the same: (1, 0).

• Region g: We must have p1 = q1, so that the equilibrium
points in both regions are (0, 0).

We next consider region e, paired with regions f and g.
• Region f: We can multiply the first constraint for region

e by q1 + (1 − η)γ1 and add it to the second constraint
to find

p1
(
ηq2 + (1− η)q1 + (1− η)2γ1 + η2γ2

)
>

η2q1γ2 − η(1− η)γ1q2−
(q1 + (1− η)γ1)

(
(1− η)2γ1 + η2γ2

)
.

Combining this with the constraint p1 > −γ1 from region
f, we have

−(1− η)γ1q1 > η2q1γ2 + η2γ1q2

+ (ηγ1 − q1)
(
(1− η)2γ1 + η2γ1

)
,

which simplifies to a contradiction:

0 > ηγ1
(
(1− η)2γ1 + η2γ2 + (1− η)q1 + ηq2

)
.
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(a) β distribution parameters (α, β) = (5, 2).
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(b) β distribution parameters (α, β) = (2, 2).
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(c) β distribution parameters (α, β) = (1, 3).

Fig. 8. Equilibrium adoption levels as the coverage factor η varies for different β distributions of the user heterogeneity variable θ. System parameters are
(a) q1 = 150, q2 = 250, γ1 = 50, γ2 = 150, p1 = 50, p2 = 40; (b) and (c) q1 = 200, q2 = 280, γ1 = 50, γ2 = 150, p1 = 50, p2 = 5.
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Fig. 9. Equilibrium adoption levels as the coverage factor η increases, x1 = 0
for large η. User heterogeneity θ follows a β distribution with parameters
(α, β) = (1, 3) (cf. Fig. 10). System parameters are q1 = 100, q2 = 300,
γ1 = 50, γ2 = 100, p1 = 40, p2 = 10.

• Region g:We have p1 + p2 = (1 − η)q1 + ηq2, so that
the equilibrium in both regions is (0, 0).

Finally, we consider regions f and g: any equilibrium point
satisfying both these constraints must satisfy q1 ≥ p1 > 0 >
−γ1 ≥ p1, which is a contradiction.

E. Proposition 4

The condition follows upon noting that the assumptions
x1 = 0, x1 +x1+2 < 1, and x1+2 > 0 imply that the adoption
dynamics lie in region e. Differentiating Table II’s equilibrium
expression for x1+2 in this region, we find the condition (12).
If x1 > 0, the adoption dynamics lie in region c. We may
differentiate the equilibrium exptressions for x1 + x1+2 and
x1+2 in this region and use the constraints in Table II to show
that these quantities are increasing in η.

F. Proposition 5

Under the given conditions for x1 and x1+2, the dynamics
lie in region c of Table I. Thus, we differentiate the equilibrium
expression for x1 in region c in Table III to obtain the desired
result.

G. Proposition 6

We first show that the revenue in region b cannot exceed
that in region c or e. Next, for ηγ2q1 ≥ (1−η)γ1q2, we show
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Fig. 10. Different β distributions used for the user heterogeneity variable θ
in Fig. 8.

that the revenue in region e cannot exceed that in region c.
Under these conditions, the derivative with respect to η of the
maximum revenue in region e is nonnegative. We then take
the derivative of the revenue in region c with respect to η,
and show that it is nonnegative for η ∈ [0, 1]. Since revenue
in region c equals that in region d at η = 0, the proposition
follows.

Region b: We first consider the case 2(1− η)γ1 − 2ηγ2 >
q2 − q1. By inspection, in this case region b has negative
revenue. Since regions c, d and e have positive revenue, this
cannot be optimal.

We now suppose that 2(1 − η)γ1 − 2ηγ2 ≤ q2 − q1 and
ηγ2q1 < (1 − η)γ1q2. We show that the maximum revenue
in region b is less than the maximum revenue in region e. It
suffices, from Table IV, to show that

(
η (q2 − q1)

2
+ 4(1− η)γ1 (q1 − q2)

)
×
(
(1− η)q1 + ηq2 + (1− η)2γ1 + η2γ2

)
≤ ((1− η)q1 + ηq2)

2
(η (γ1 + γ2) + q2 − q1) .

Simplifying and neglecting some terms, we find the sufficient
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condition

ηγ1q
2
1 + ηγ2q

2
1 + q21 (q2 − q1) + 2η2γ1q1 (q2 − q1)

+ 2η2γ2q2 (q2 − q1) + ηq1 (q2 − q1)
2

+ η2γ1 (q2 − q1)
2

+ 4η(1− η) (4− 1 + η) γ1 (q2 − q1)
2 ≥ 0,

which is clearly true, since each term in the sum is nonnega-
tive.

Next, we suppose that ηγ2q1 ≥ (1− η)γ1q2 and show that
the revenue at region c’s revenue-maximizing point is larger
than the maximum revenue in region b. From Table IV, it
suffices to show that

η
4 (q1 − q2)

2

η (γ1 + γ2) + q2 − q1
≤q

2
1ηγ2 + q22ηγ1

4A

+
q21 (q2 − q1)

4A

+
ηq1 (q1 − q2)

2

4A

for any given η, where

A =γ1q2 + ηγ1γ2

+ q1 (q2 − q1 + ηγ2 − (1− η)γ1) .

Multiplying out the fractions, we find the sufficient condition(
ηγ1q2 + η2γ1γ2

)
(q1 − q2)

2

− η(1− η)q1γ1 (q1 − q2)
2

≤ (ηγ1 + ηγ2 + q2 − q1)
(
ηγ2q

2
1 + ηγ1q

2
2

)
.

We now expand the left side of this inequality to find that it
is

≤− ηγ1q1q22 + ηγ1q
3
2

+ η2γ1γ2q
2
1 − 2η2γ1γ2q1q2 + η2γ1γ2q

2
2

=ηγ1q
2
2 (q2 − q1) + η2γ1γ2q

2
1

− 2η2γ1γ2q1q2 + η2γ1γ2q
2
2 .

We now obtain

−2η2γ1γ2q1q2 ≤η2γ21q22 + η2γ22q
2
1

+ ηγ1q
2
2 (q2 − q1) .

Since the left-hand side is clearly negative, while the right-
hand side is positive, we have the desired result.

Region e: We multiply the optimal revenue expressions in
Table IV and simplify terms to find the necessary and sufficient
condition

η ((1− η)γ1q2 − ηγ2q1)
2 ≥ 0,

which clearly holds for all η.
If ηγ2q1 < (1− η)γ1q2, then the revenue-maximizing point

lies in region e. We thus take the derivative of revenue in
region e with respect to η to find that it equals

Cη
[
(q2 − q1)

2 − 2γ1q2 − 2γ2q1

]
+ 2γ1q2 + q1 (q2 − q1) ,

where

C =
((1− η)q1 + ηq2)

4 ((1− η)q1 + ηq2 + (1− η)2γ1 + η2γ2)
2 .

Since ηγ2q1 < (1 − η)γ1q2, we see that this quantity is
nonnegative, and thus that the revenue increases as η increases.
The revenue-maximizing point is thus the largest value of η
for which ηγ2q1 < (1− η)γ1q2.

Region d: We first show that the revenue in region c is
increasing in η. By inspection, the revenue expressions in
regions c, d, and e are equal at η = 0, which will complete
the proof. We calculate that

dRc
dη

=
γ21q

2
2 (q2 − q1) + 2γ1q1q2 (q2 − q1)

2

4X2

+
q21 (q2 − q1)

2
+ (1− η)γ1q

3
1 (q2 − q1)

4X2
,

where

X =γ1q2 + ηγ1γ2

+ q1 (q2 − q1 + ηγ2 − (1− η)γ1) .

Thus, dRc/dη ≥ 0 for all values of η ∈ [0, 1].

H. Proposition 7

If ηγ2q1 ≥ (1 − η)γ1q2, the ISP’s revenue is maximized
when the dynamics lie in region c. Thus, we can use Table
IV’s expressions for the optimal prices in region c to find the
corresponding adoption levels in Table II. Differentiating with
respect to η yields the proposition.

APPENDIX B
THROUGHPUT LINEARIZATION

In Section III, we use linear models to represent the
decrease in utility due to throughput degradation. We justify
this assumption here by analyzing the accuracy of a linear
approximation to previously proposed throughput measures.

Prior works on technology adoption [14] take congestion
levels into account with a Markov chain analysis, assuming
Poisson arrivals of rate λx and exponentially distributed ses-
sion length with mean µ−1. The expected throughput is then

−R0(1− νx)
log(1− νx)

νx
, (17)

where R0 is the average time of service without interference
or queueing, and ν = λ/µ is assumed to be less than 1. Thus,
the throughput degradation equals (17), less the maximum
throughput. We now use Taylor’s remainder theorem to bound
the error of a linear approximating this quantity. The second
derivative of (17) is

R0

(
2

x2
+
ν

x
+

ν2

1− νx
+

2 log(1− νx)

νx3

)
=

R0ν
2
∞∑
n=0

n+ 1

n+ 3
(νx)

n
,
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where the infinite sum uses the Taylor series for log(1− νx)
and the geometric series for (1− νx)−1. Thus, approximating
(17) at x = 0.5, we can bound the error by

R0ν
2 max
x∈(0,1)

(x− 0.5)
2

2

∞∑
n=0

n+ 1

n+ 3
(νx)

n

≤ R0ν
2

8
max
x∈(0,1)

∞∑
n=0

n+ 1

n+ 3
(νx)

n
.

Approximating the sum as the geometric series of νx, we
let x = 1 to obtain an upper bound of R0ν

2/(8 − 8ν).
Numerically, this bound is in fact conservative; for instance,
taking R0 = 1 and ν = 0.5 produces a maximum error of
0.013, as opposed to an analytical bound of 0.0625.

APPENDIX C
NON-UNIFORMLY DISTRIBUTED VALUATIONS

In Fig. 8, we show some adoption behaviors for fixed system
parameters when the user heterogeneity variable θ, introduced
in Section III-A, is not uniformly distributed. We consider
three different distributions of θ (probability density functions
shown in Fig. 10) and investigate the equilibrium adoption
levels as the coverage factor η varies. As in Fig. 3a in Section
IV-A, we observe that as the coverage increases, adoption x1+2

decreases, while total adoption x1 +x1+2 increases. In Fig. 9,
we present an example in which x1 = 0 for η > 0.12; then as
x1+2 decreases, so does the total adoption.


