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Abstract—To cope with recent exponential increases in demand for mobile data, wireless Internet service providers (ISPs) are
increasingly changing their pricing plans and deploying WiFi hotspots to offload their mobile traffic. However, these ISP-centric
approaches for traffic management do not always match the interests of mobile users. Users face a complex, multi-dimensional tradeoff
between cost, throughput, and delay in making their offloading decisions: while they may save money and receive a higher throughput
by waiting for WiFi access, they may not wait for WiFi if they are sensitive to delay. To navigate this tradeoff, we develop AMUSE
(Adaptive bandwidth Management through USer-Empowerment), a functional prototype of a practical, cost-aware WiFi offloading
system that takes into account a user’s throughput-delay tradeoffs and cellular budget constraint. Based on predicted future usage
and WiFi availability, AMUSE decides which applications to offload to what times of the day. Since nearly all traffic flows from mobile
devices are TCP flows, we introduce a new receiver-side bandwidth allocation mechanism to practically enforce the assigned rate of
each TCP application. Thus, AMUSE users can optimize their bandwidth rates according to their own cost-throughput-delay tradeoff
without relying on support from different apps’ content servers. Through a measurement study of 20 smartphone users’ traffic usage
traces, we observe that though users already offload a large amount of some application types, our framework can offload a significant
additional portion of users’ cellular traffic. We implement AMUSE on Windows 7 tablets and evaluate its effectiveness with 3G and
WiFi usage data obtained from a trial with 37 mobile users. Our results show that AMUSE improves user utility; when compared with
AMUSE, other offloading algorithms yield 14% and 27% lower user utilities for light and heavy users, respectively. Intelligently managing
users’ competing interests for cost, throughput, and delay can therefore improve their offloading decisions.

Index Terms—Bandwidth management, mobile data, WiFi offloading
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1 INTRODUCTION

Recent unprecedented increases in demand for mobile
data traffic have begun to stress many mobile operators’
networks: Cisco, for instance, predicts that mobile data
traffic will grow at 61% annually from 2013 to 2018,
reaching 15.9 exabytes per month by 2018 [1]. To cope
with this surge in data usage, which is driven by appli-
cations such as mobile video, cloud services, and online
magazines, many ISPs (Internet service providers) have
adopted tiered pricing plans with monthly data caps to
discourage heavy usage [2]. To further reduce network
traffic, many ISPs have also introduced supplementary
networks such as WiFi hotspots or femtocells to offload
their cellular traffic [3]–[5]. Such supplementary offer-
ings introduce new challenges for users as they decide
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which parts of their traffic can be offloaded at what
times.

1.1 Empowering User Decisions

Many data plans, especially in the U.S., charge large
overage fees when users exceed a monthly usage cap.
While offloading to WiFi reduces cellular data usage,
thus saving users money on their data spending, they
must also take into account WiFi’s intermittent availabil-
ity and higher throughput performance. At some times,
e.g., while out shopping, a user does not have immediate
WiFi access and must wait for WiFi connectivity. The
user then faces a choice:
• Don’t wait for WiFi: The user must consume cellular

data, using up some of his data cap, and may
experience lower throughput than WiFi. However,
she need not wait for data access, which is important
for urgent applications, e.g. email.

• Wait for WiFi: The user can save money and ex-
perience higher throughput, but must decide how
long to wait. Different applications can wait for
different periods of time, e.g., cloud backups might
be more delay tolerant than photo uploads to Face-
book. Given each app’s willingness to wait for some
period of time, users must anticipate whether WiFi
will be available at that time and decide whether the
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potential savings in data offloading and potential
increase in throughput are worth the wait.
Waiting for WiFi also introduces the risk that apps
waiting for WiFi must share the limited 3G band-
width, should WiFi ultimately not be available.
Some apps, such as videos, will require a large
amount of bandwidth; their quality can suffer sig-
nificantly if they must share bandwidth with other
apps, e.g., cloud backups.1

Most users will not manually balance these competing
factors in making offloading decisions. Thus, we propose
a user-side, automated WiFi offloading system called
AMUSE (Adaptive bandwidth Management through
USer EMpowerment) that intelligently navigates these
tradeoffs for the user. AMUSE utilizes WiFi access and
application usage predictions to decide how long appli-
cation sessions should wait for WiFi and, in case WiFi is
not available, to optimally allocate 3G bandwidth among
different apps. Building such a system poses both algo-
rithmic and implementation challenges–not only must
the user’s tradeoff between cost, throughput quality, and
delay be quantified and balanced, but we require a way
to automatically enforce AMUSE’s waiting for WiFi and
sharing of 3G bandwidth. In solving these problems, we
make the following contributions:

1) We develop a system for cost-aware WiFi offload-
ing that exploits a user’s delay tolerances for dif-
ferent applications and makes offloading decisions
satisfying her throughput-delay tradeoffs and 3G
budget constraints.

2) To enforce AMUSE’s bandwidth allocation deci-
sions for each application, we implement a prac-
tical receiver-side rate control algorithm for TCP.2

The algorithm is fully contained on and driven by
end-user devices, making it suitable for practical
deployment as it requires no modification of the
TCP server side.

3) In order to analyze current mobile offloading pat-
terns and the potential to offload more traffic from
different apps, we conduct a measurement study
using application usage data collected from 20 An-
droid smartphone users for one week.3 The results
reveal several facts that show offloading practice
and possibility of smartphone users.

4) We surveyed 100 participants in the U.S. to evalu-
ate users’ tradeoff between the cost of 3G usage and
their willingness to wait for WiFi access. We incor-
porate the resulting cost-throughput-delay tradeoff
estimates into our model, and evaluate AMUSE’s
performance using these results and 3G and WiFi

1. While our systems apply to any form of cellular data, e.g., 3G or
LTE networks, we frame our discussion in terms of 3G data. LTE speeds
can exceed WiFi, which makes the users’ tradeoffs more complicated
and AMUSE even more useful.

2. We assume that download traffic makes up most of users’ usage,
so that the receiver is synonymous with the user.

3. Throughout this work, “app usage data” refers to the volume of
data used by each application, not the time duration of application
usage.

usage data collected from a trial with 37 mobile
users.

AMUSE is the first WiFi offloading system to fully
account for cost, delay, and throughput in offloading
traffic from 3G to WiFi. Other works have considered
using WiFi offloading to reduce cost within a basic
delay constraint, e.g., by using predictions of WiFi con-
nectivity to improve offloading [6] or allocating more
WiFi bandwidth to users who are expected to leave
the WiFi coverage area in a short amount of time [7].
Mobility can also enhance prefetching data over WiFi
[8]. Wiffler [9] considers a more sophisticated model
of different applications’ delay tolerances, but does not
consider different apps’ bandwidth needs or their need
to share 3G bandwidth.

To fully incorporate cost, delay, and throughput, we
build an end-to-end mobile offloading system. In the
next section, we describe AMUSE’s components and the
challenges of developing this end-user system.

1.2 Components of AMUSE

Figure 1 gives an overview of AMUSE’s components
and their interactions. The system architecture comprises
four main modules: the User Interface, Bandwidth Op-
timizer, TCP Rate Controller, and App-Level Session
Tracker. The latter two modules reside in the kernel
and are accordingly shaded darker in the control flow
diagram (Fig. 1b); these enforce the offloading decisions
made by the User Interface and Bandwidth Optimizer,
which reside in the user-space. To illustrate the system’s
full set of interactions, the Bandwidth Optimizer is split
into three components: two prediction modules for app
usage and WiFi availability, and an algorithm that com-
putes utility-maximizing offloading decisions.

1.2.1 User Interface
As suggested by its name, AMUSE’s User Interface
interacts directly with the user, displaying the offloading
decisions made as well as the user’s app-level usage
history. The user may also set her preferences on the
user interface, e.g., the maximum budget for 3G usage
and delay tolerances for different applications.

1.2.2 Bandwidth Optimizer
The Bandwidth Optimizer makes offloading decisions
for the user, given the preferences set by the user on the
User Interface. It consists of the three medium-shaded
components in Fig. 1b: app usage prediction, WiFi access
prediction, and a utility maximization algorithm.

AMUSE uses an adaptive user mobility model to
predict WiFi availability at future times (Fig. 1b). The app
usage prediction component allows AMUSE to calculate
the expected savings from offloading an application
session and to allocate 3G bandwidth to all active apps
at any given time, giving more bandwidth to the apps
with higher bandwidth requirements.
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Fig. 1. Overview of AMUSE’s components.
The user’s offloading decisions at any given time

must take into account future offloading decisions–for
instance, a myopic algorithm may delay all sessions
in the morning to 12 noon, if the probability of WiFi
access at that time is high. However, should WiFi not be
available then, all of the delayed sessions would have to
share the limited 3G bandwidth, or else wait even longer
for WiFi. Thus, at the beginning of each day, AMUSE
optimizes over the entire rest of the day, using estimates
of WiFi access probabilities and the size of application
sessions at different times (e.g., hours). It then refines
this initial solution over the day to reflect the observed
usage and WiFi access patterns.

1.2.3 TCP Rate Controller and Session Tracker
Since 99.7% of mobile traffic flows are TCP, we enforce
the Bandwidth Optimizer’s 3G bandwidth allocations
and offloading decisions with a TCP rate controller on
end-user devices [10]. To do so, the controller modifies
the TCP advertisement window in outgoing acknowl-
edgement (ACK) packets. Unlike typical bandwidth
throttling mechanisms, this rate control is completely
specified by the end user on a per-application basis; thus,
for example, file downloads may be delayed to wait for
WiFi, while streaming videos may receive a higher 3G
bandwidth and not be delayed. The app-level session
tracker measures the actual usage for each application as
the rate controller enforces the Bandwidth Optimizer’s
decisions. These usage data are then used to update
AMUSE’s prediction modules, as shown in the control
flow diagram (Fig. 1b), and are displayed to the user on
the User Interface.

In Section 2, we discuss prior works that propose
functions related to components of the AMUSE system.
Section 3 discusses the Bandwidth Optimizer in more

detail, while Section 4 gives an overview of the TCP Rate
Controller’s algorithm and implementation. In Section
5, we observe mobile users’ wireless network usage
pattern from the viewpoint of WiFi offloading, and find
how much and which kind of applications are currently
offloaded and can be offloaded more. In Section 6,
we evaluate AMUSE’s effectiveness in improving users’
experience, utilizing 3G and WiFi data gathered from 37
mobile users. When compared with two representative
offloading algorithms (on-the-spot and delayed [11]), we
show that AMUSE increases user utility by intelligently
managing the cost-throughput-delay tradeoff for heavy
and light users. Finally, we conclude the paper in Section
7.

2 RELATED WORK

Recent studies of 3G and WiFi usage traces, e.g. [11]
have showed that offloading 3G traffic to WiFi can
significantly benefit mobile ISPs. Other systems have
demonstrated offloading’s benefits for user experience
[6], [8], [9]; other works demonstrate that WiFi offloading
can benefit both ISPs and users [12] and even generate
more revenue for ISPs [13].

Some works have focused on incentivizing users to of-
fload traffic to WiFi. In [14], the authors develop a utility
and cost-based formulation to decide the 3G network
load that maximizes the user’s benefit and apply the
decided loads using a modified SCTP implementation
in Linux that stripes traffic across multiple interfaces.
Win-Coupon [15] takes a slightly different perspective
and proposes a reverse-auction scheme to incentivize
users to offload their traffic so as to decrease the overall
network. Other works, including [16], consider the en-
ergy consumption when making an offloading decision.
We do not consider energy in this work, but can easily
incorporate the battery consumption into our proposed
optimization algorithm.

Several research works have analyzed the traffic of
smart devices in order to understand their user behavior
[17], [18], [19], [20], [21]. In particular, [17] examines
users’ traffic diversity, relationship to application types,
interactivity, and diurnal patterns, while [18] investigates
the usage patterns of smartphone apps via network-side
measurements. Our work is different from these in that
we specifically focus on the potential for WiFi offloading
of different applications and incorporate findings on
their delay tolerances.

Unlike most offloading works, AMUSE also controls
the 3G bandwidth for different applications. AMUSE is
unique in using of receiver-side TCP advertisement win-
dows to control application-specific 3G bandwidth from
the user side. While several commercial applications
(e.g., [22]–[24]) provide user-side application rate control,
most require users to manually specify the desired rates.
AMUSE provides automated bandwidth rates and, by
conforming to TCP interactions, avoids the TCP timeouts
common to existing user-side rate control applications.
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Although the TCP advertisement window is normally
used by the TCP receiver to inform the TCP sender of
its available buffer space, other trials [25] have used the
advertisement window as a means to control the rate of
applications. However, this approach has been mainly
applied to the enforcement of different application pri-
orities, rather than direct control of the application rates.
Other solutions, such as [26], focus on the edge gateway,
rather than the end user.

3 BANDWIDTH OPTIMIZER

In this section, we describe the individual components
of AMUSE’s bandwidth optimization algorithm. Our
design follows two principles: 1) AMUSE’s offloading
decisions will be implemented in real time on arriving
sessions, and 2) AMUSE must use only the data and
computational resources available on the end user’s
device. Thus, we require simple, yet accurate, algorithms
to compute concrete offloading decisions that can be
communicated directly to the TCP Rate Controller (cf.
Fig. 1b). In the discussion below, we first introduce prac-
tical algorithms to predict WiFi access and application-
specific usage (Sections 3.1 and 3.2). We then incorporate
these predictions into a mathematical allocation frame-
work in Section 3.3 and propose a heuristic algorithm
for computing AMUSE’s bandwidth allocations and of-
floading decisions in Section 3.4.

To consider a user’s different delay tolerances on
different applications, we group a user’s traffic into dif-
ferent application types, e.g., streaming, browsing, and
downloads. For practical implementability, we assume
that only the most heavily used (e.g., top five) applica-
tions are considered, and denote these collectively as a
set J . We suppose that the day is divided into n discrete
periods of time, e.g., 24 hours, and for each period, we
predict both WiFi access and application usage volumes.

Given these predictions, we (i.e., AMUSE) must de-
cide which applications to offload when, subject to a
maximum 3G usage budget. By delaying sessions to
future periods, users may gain WiFi access and the
ability to offload; however, if WiFi is unavailable, the
user must send these sessions over 3G, which has a
finite bandwidth capacity that must be shared among the
different applications. AMUSE therefore computes a 3G
bandwidth allocation when deciding whether to wait for
WiFi. Following the first principle above, we formulate
this decision as a multiple choice knapsack problem, and
propose a heuristic solution algorithm.

3.1 Predicting WiFi Connectivity
Since WiFi availability is heavily location-dependent, we
predict the probabilities of WiFi access by combining
user location prediction with the probabilities of WiFi
access at different locations. We define a “location” to
be an area with WiFi coverage (e.g., a user’s home).
To improve our prediction algorithm’s accuracy, we
consider the functional availability of WiFi at different

locations: while WiFi is always physically available at a
given location, the user may not access WiFi every time
that she is there. For instance, a user may sometimes
connect to WiFi at her local Starbucks, but may walk
by on weekdays without initiating a connection. These
access probabilities also depend on time: a user might
stop at Starbucks in the morning but not in the evening.
We use a training set of empirical WiFi access data to
estimate these time-dependent WiFi access probabilities
at each location, and modify them as we collect more
access data.4 For a location l, we denote the probability
of WiFi access during period k as vk(l). We use Lk to
denote the set of observed locations in period k.

Given the time- and location-specific probabilities
vk(l), we then predict overall WiFi access by incorporat-
ing predictions of users’ future locations. We define wk
to be the overall WiFi probability in period k, i.e., the
expected WiFi probability, considering the probabilities
of all possible locations in period k and the WiFi access
probability in period k for each location. We use a
second-order Markov chain for the location prediction,
which has been shown to be highly accurate [27]. Algo-
rithm 1 summarizes the calculation of overall WiFi access
probabilities. We use the notation pk+2

l (lklk+1) to denote
the probability that a user is at location l ∈ Lk+2 during
period k + 2, given his locations lk in period k and lk+1

in period k + 1. To calculate these pk, we define Nk(s)
as the number of times that s is observed, where s is a
sequence of locations that ends in period k; the observed
location in each period k is denoted by λk. We update
the pk values using the empirical probabilities of a user
being at different locations during period k.

3.2 Predicting Future Usage

At the beginning of each day, we use previous data to
predict the size sj(k) of each application type j ∈ J ’s
usage in each period k. To accommodate the dependence
of session size on the amount of bandwidth allocated,
our definitions of session “size” depend on the appli-
cation: for fixed-volume application sessions such as
downloads, in which the volume (MB) does not depend
on the available bandwidth, we define the session size
as its volume. For fixed-time sessions such as streaming,
in which the volume does depend on the bandwidth,
we define the size as the time to complete. We use Jv to
denote the set of fixed-volume and Jt the set of fixed-
time application types. We stress that our prediction
algorithms do not depend on the definition of session
size; they rely only on users’ consistency from day to day.
We estimate the future usage sj(k) by taking a moving
average of the observed usage sizes σj(k) of application
j in period k over some fixed number of days.5

4. One may refine these calculations by using only weekday or only
weekend data, as user mobility will likely differ on weekdays and
weekends.

5. Other prediction methods (e.g., ARIMA) can be substituted for a
moving average without affecting the overall structure of our system.
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Algorithm 1: Computation of WiFi access probabili-
ties over the rest of the day in period i.

if i = 1 then
for k ← 1 to n do

wk ←
∑

l∈Lk
vk(l)

Nk(l)
N , N is the number of days of data.

// Calculate WiFi probabilities for the next
n periods.

if i > 1 then
for k ← 2 to n do

forall the l ∈ Lk , lk−1 ∈ Lk−1, lk−2 ∈ Lk−2 do
if Nk−1(lk−2lk−1) > 0 then

pkl (lk−2lk−1)←
Nk(lk−2lk−1l)

Nk−1(lk−2lk−1)

else

pkl (lk−2lk−1)←
Nk(lk−1l)

Nk−1(lk−1)

wk ←
∑

l∈Lk
pkl (λk−2λk−1)vk(l)

In updating our usage estimates, we modify the
moving-average calculation to take into account our de-
ferral recommendations; we wish to predict the amount
of future usage without the deferrals recommended by
our algorithm. Since a user may delay application usage
to another time in order to offload it to WiFi, we “shift
the usage back” in order to evaluate and detect changes
in the underlying usage pattern over the day. We per-
form these adjustments if the observed usage size for
application j in period i is much less than the predicted
sj(i), i.e., the user has shifted her usage of application
j from period i. To account for the uncertainty in our
predictions, we suppose that the actual usage deferred
to period k from each period i is proportional to the
predicted usage deferred;6 this assumption ensures that
we do not calculate that more usage was deferred to
period k than the actual usage observed in that period.
Thus, for each application j ∈ J and period i < k, we
adjust the observed usage σj(i) and σj(k) by

σj(i)← σj(i) +

n∑
k=i+1

cji (k)sj(i)σj(k)

sj(k) +
∑k−1
l=1 c

j
l (k)sj(l)

,

σj(k)← σj(k)−
k−1∑
i=1

cji (k)sj(i)σj(k)

sj(k) +
∑k−1
l=1 c

j
l (k)sj(l)

.

Here cji (k) is an indicator variable taking the value 1 if
application j is deferred from period i to period k and
0 otherwise. The first expression adjusts the observed
usage for application j in period i by adding the traffic
amount deferred to later time periods, while the second
expression adjusts by subtracting the traffic amounts de-
ferred from previous times. This method is approximate,
but we expect that it will be helpful for predicting the
future traffic amounts from observed traffic.

6. We assume that at the time of deferring an application, we cannot
know how much traffic the user will defer. For many applications such
as web browsing and social networking, it is hard to know the exact
traffic amount they will use in advance, since their contents can be
dynamically selected or created by the user.

3.3 User Utility Maximization

In this section, we formulate the user’s offloading de-
cision problem, assuming the future WiFi probabilities
wk and usage sj(k) are known. In the discussion below,
the phrase “originally in period i” indicates that the
application session(s) under consideration are completed
in period i if they are not deferred to a future period.

3.3.1 Utility Functions

To mathematically formulate the user’s offloading de-
cision problem, we need a concrete measure of the
user’s tradeoffs between cost, throughput, and delay.
Thus, for a given application type j in period i, we
derive expressions for users’ utility of completing those
application sessions over 3G and over WiFi. This utility
is determined by the per-volume price p of 3G, the
amount of time t the session is deferred, the bandwidth
speed r at which the session is completed, and the size
s of the session. We use Uj(p, t, r, s) to denote the utility
of application j ∈ J .

Though many functions could be used as the Uj , we
note that these should be decreasing in p and t (price
and time deferred) and increasing in r (bandwdith). For
fixed-volume applications, we suppose that the utility is
decreasing in s, since a larger size indicates more time to
complete the session. We use the economic principle of
diminishing marginal utility to argue that as r becomes
larger or t becomes smaller, users’ marginal utility from
r should decrease, and the marginal utility from t should
increase. For simplicity, we take the units of t to be
the number of periods deferred, and do not consider
sessions’ timing within the period to which they are
deferred. Since different users will have different trade-
offs between cost, quality, and delay, we suppose that
the Uj functions take the same form, but have different
parameters that depend on the particular application
and user.

The above guidelines still leave many possible utility
functions. To narrow these down, we conducted an on-
line survey of over 100 users, primarily students, faculty
and staff from U.S. universities. For each application in
Table 1, we gave participants the cost to complete one
application session over 3G, as well as the speed of WiFi
relative to 3G. We then asked the participants how long
they would wait for WiFi access instead of immediately
completing the session over 3G; for each question, we
offered five options for the maximum amount of time
participants were willing to wait, ranging from “I won’t
wait” to “as long as necessary.”7

We find that our survey data provides a good fit with
the functional form{

Uj(p, t, r, s) = Cj exp (−ν + rν − µt)− ηprs j ∈ Jt
Uj(p, t, r, s) = Cj exp (−(s/r)ν − µt)− ηps j ∈ Jv,

(1)

7. The survey questions are available in [28].
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TABLE 1
Estimated parameters for the utility function (1).

C µ ν η

Email 0.9848 0.1527 0.1527 assumed 0
Browsing 0.6865 0.3269 0.0263 assumed 0

Video 0.9399 0.0144 4.3785 0.0986
Social netw. 0.4738 0.006 0.006 0.0986
Downloads 0.6737 0.0097 0.0097 0.0986

where Uj denotes the parameterized utility function for
application types j; prs for j ∈ Jt and ps for j ∈ Jv
denote the cost of each session; and Cj , µ, ν, and η are
nonnegative parameters that depend on j. These func-
tions satisfy several desirable properties: for example,
the constants Cj allow for different user priorities for dif-
ferent types of sessions (e.g. a user intrinsically derives
more utility from certain applications, even with zero
delay or time to completion).8 For j ∈ Jv , the s/r term in
the exponential represents the time to completion, while
for j ∈ Jt, the bandwidth r represents the quality of the
streaming video.

Table 1 shows the parameter values calculated for each
session type. To estimate these parameter values, we
used the probability that a user would not wait for WiFi
as the utility function value, with b, t, r and s measured
relative to their values for WiFi. We assume a negligible
cost term for low-volume (e.g., email) sessions. We then
used nonlinear curve-fitting methods to calculate the
utility function parameters, and found a small average
squared-error of 0.05 for each survey question, upon
comparing the actual answers with our estimates.

We see that the Cj coefficients roughly match our
expectations, with email the most important and social
networking (photo uploads) the least important applica-
tions. The parameter µ represents the amount of time
that a user will wait to start an application, e.g., in
anticipation of WiFi access or higher 3G speeds: it is
largest (i.e., users are least willing to wait) for browsing
and email. The importance of available throughput is
parameterized by ν, and is highest for video and lowest
for social networking.

3.3.2 Users’ Optimization Problem
We now use the utility functions (1) to formulate the
user’s optimization problem. To represent possible 3G
and WiFi bandwidth speeds, we normalize the volume
units so that the fixed per-second WiFi speed equals
1. The 3G speed γ is chosen from a finite subset of
possibilities Γ; generally, all γ < 1 since 3G speeds are
usually slower than WiFi, though for LTE networks we
may have γ > 1. For each γ ∈ Γ and period k ≥ i,
we define the indicator variables cji (k, γ) to be 1 if a
session of type j is deferred from period i to period k
and assigned 3G speed γ, and 0 otherwise. Note that γ
is always chosen for each delayed period k; this speed
γ is then used if WiFi is not available in period k. If
the probability of WiFi availablity is 100%, any value of

8. The−ν in the exponential for j ∈ Jt is included for normalization:
with maximum bandwidth 1 and no delay, we then have Uj = Cj .

γ can be chosen without affecting the user’s expected
utility from WiFi in period k. This utility, for a session
of type j originally in period i, is then∑

γ∈Γ

cji (k, γ)

wkUj (0, k − i, 1, sj(i)) ,

while the expected utility from 3G in period k is∑
γ∈Γ

cji (k, γ)(1− wk)Uj (p, k − i, γ, sj(i)) .

The user wishes to maximize the sum of these utilities
over all (original) periods i and application types j:

max
cji (k,γ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(
wkUj

(
0, k − i, 1, sj(i)

)
+

(1− wk)Uj
(
p, k − i, γ, sj(i)

))
cji (k, γ)

))]
(2)

s.t.
∑
k≥i

∑
γ∈Γ

cji (k, γ) = 1; cji (k, γ) ∈ {0, 1} , (3)

where (3) ensures that each application j in period i is
deferred to only one period k (we may have k = i),
with 3G speed γ. This optimization is performed subject
to two constraints: a budget constraint on expected 3G
usage, and capacity constraints on the 3G bandwidth in
each period.

We assume that the user specifies a maximum monthly
budget B for 3G usage. We then calculate a daily budget
B, taking into account both the number of days remain-
ing in the month (denoted by m) and the amount of
budget Br that has not yet been spent. To allow the user
some flexibility, we multiply the average usage Br/m by
the factor exp

(
1−m−1

)
, which equals 1 only if m = 1:

at the end of the month, the user cannot exceed the
remaining budget. The daily budget B is then defined
as Br exp

(
1−m−1

)
/m, and the budget constraint is

p

n∑
i=1

[ ∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cji (k, γ)(1− wk)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cji (k, γ)(1− wk)γsj(i)

] ≤ B, (4)

The 3G bandwidth capacity constraints ensure that the
sum of the bandwidth allocated to each application in
a given period does not exceed the fixed maximum
bandwidth, which we denote as β. Mathematically, this
constraint is

(1− wl)
∑
i≤l

∑
j∈J

∑
γ∈Γ

cji (l, γ)γ ≤ (1− wl)β. (5)

We include a 1 − wl term on each side so that if wl =
1 and all sessions complete over WiFi, any 3G speed
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γ may be chosen. Putting (2-5) together, we obtain the
optimization problem

max
cji (k,γ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(
wkUj

(
0, k − i, 1, sj(i)

)
+

(1− wk)Uj
(
p, k − i, γ, sj(i)

))
cji (k, γ)

))]
(6)

s.t. p

n∑
i=1

[ ∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)γsj(i)

] ≤ B
(7)

(1− wl)
∑
i≤l

∑
j∈J

∑
γ∈Γ

cij(l, γ)γ ≤ (1− wl)β ∀ l (8)∑
k≥i

∑
γ∈Γ

cij(k, γ) = 1 ∀ j ∈ J ; i = 1, 2, . . . , n (9)

cij(k, γ) ∈ {0, 1} .

Note that the problem’s decision variables cji (k, γ) for all
time periods i and applications j represent the schedule
for application deferrals and 3G rates to be used if
the WiFi is not available at the scheduled times. Other
variables such as wk and sj(i) are calculated by empirical
data as explained in Sections 3.1 and 3.2. We can view
the constraints (9) as choosing exactly one item from a
knapsack, where each (i, j) pair for i = 1, 2, . . . , n and
j ∈ J is associated with a knapsack consisting of items
indexed by the variables k ≥ i and γ ∈ Γ. With this
interpretation, (6-9) can be seen as a multidimensional,
multiple choice knapsack problem. In the Appendix A,
we show that we can easily extend this formulation so
that the varying WiFi capacity is considered and the user
chooses which network to use depending on the utility
values of WiFi and 3G.

3.4 Online Algorithm
In this section, we present an online algorithm to solve
the optimization problem (6-9). At the beginning of
each day, the user computes an initial solution, given
estimates of the wk and sj(k). As the wk estimates and
known usage amounts are updated over the day, this
solution is refined.

While various algorithms exist to compute solutions
of the knapsack problem (6-9) to different degrees of
accuracy, we use a Lagrange-multiplier based solution
[29] that has relatively small computational overhead
and generally returns good approximations to the opti-
mum.9 Given a feasible solution, the algorithm improves
the solution while maintaining its feasibility, allowing us
to update previously computed solutions over the day.

9. Since our estimates of WiFi access and future usage are already
approximations, even an exact solution to the optimization (6-9) will
be an approximation of the “true” optimum.

Algorithm 2: Bandwidth allocation over a day.
i← 1 // The current period is denoted by i.
B ← (Br/m) exp

(
1−m−1

)
// Calculate the budget for the

day.
Calculate WiFi probabilities using Algorithm 1 with i = 1.
Calculate predicted usage over all n periods using a moving average.
Allocate bandwidth by approximately solving (6-9).
for i← 2 to n do

B ← B − Si−1 // Remaining daily budget, given the
spending Si−1 in period i− 1.

Update WiFi probabilities using Algorithm 1.
Update bandwidth allocations by re-solving (6-9) for the remaining
n− i+ 1 periods.

This Lagrange multiplier algorithm starts from a so-
lution that maximizes (6) without considering the con-
straints (7-9). The solution is then adjusted so that all
constraints are satisfied, beginning with the “most vi-
olated” (i.e., the constraint with largest Lagrange mul-
tiplier). This process repeats until no constraints are
violated, and the solution can then be improved by
adjusting the solution one variable at a time, so as to
most increase the objective value while still not violating
the constraints.10

As the user consumes data over the day, we update
both the remaining daily budget B and our predictions
of future WiFi connectivity {wk}. The new optimization
problem over the remainder of the day can then be
solved by taking the existing solution as the initial point
of our Lagrange multiplier algorithm. This solution may
well be feasible: the 3G capacity constraints do not
change unless WiFi becomes definitely available in some
period (wk → 1), in which case that period k’s capacity
constraint is removed. Thus, if the existing solution sat-
isfies the new budget constraint, we can skip directly to
the “solution improvement” step, significantly reducing
the computational overhead. Algorithm 2 presents this
full online algorithm, along with the WiFi and app usage
predictions (Sections 3.1 and 3.2).

4 IMPLEMENTATION

We implemented an AMUSE prototype on Windows 7
tablets with the system architecture shown in Fig. 1a. We
used the Windows Filtering Platform (WFP) [30] to track
application usage and implement a user-side TCP rate
control algorithm to control each application’s download
rate.

The AMUSE prototype displays both total usage and
the usage of individual applications on a daily, weekly,
and monthly basis, as well as the current upload and
download rates. We also provide user interfaces from
which the user can, if he so chooses, set the download
rate of each application and configure his billing starting

10. If the constraints are especially tight, the Lagrange multiplier
algorithm may not yield a solution. While in practice such a situation
is unlikely to occur, we can easily recover from this failure by taking as
the initial allocation the worst-case scenario, in which all sessions are
given the lowest possible bandwidth; we assume that this is a feasible
solution. If only the bandwidth constraint is violated, we can simply
scale down the 3G bandwidths assigned to different applications.
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Fig. 2. Screenshots of the AMUSE prototype. Users can
view their monthly usage and set bandwidth rates for
individual applications.

date and data plan (e.g., 2GB per month). Figure 2 shows
screenshots of these features.

We next describe the details of our receiver-side TCP
rate control algorithm, followed by experimental data
verifying its efficacy.

4.1 Receiver-Side TCP Rate Control
Algorithm 2 decides the 3G rate that will be used if WiFi
is not available during the scheduled time period. In
this section, we introduce a TCP rate control algorithm
that applies the decided 3G rate to the receiver-side
TCP connection, enforcing the result of Algorithm 2. We
devised a receiver-side TCP rate control algorithm since
TCP accounts for most Internet traffic [10], and sender-
side TCP rate control can be easily implemented (e.g.
using tc in the Linux system).

A TCP sender adjusts a session’s rate based on its
congestion window size (cwnd). The ACK packets from
the receiver act as a feedback to the sender on how
much has been sent and how much more can be sent
to the receiver. We use this ACK clocking to shape the
incoming/downloading rates of TCP traffic, by mod-
ifying the TCP advertisement window size (rcv wnd)
field in each ACK packet using the WFP driver. The
idea behind this approach is that a TCP sender cannot
send more than min (cwnd, rcv wnd). While one could
instead shape the TCP traffic rates by adjusting the
round-trip time (RTT) of each flow (i.e., stretching each
ACK packet), this latter approach increases the overall
response time and renders some interactive or video
TCP applications useless. Modifying the advertisement
window size does not increase the RTT of each flow,
making it suitable for all TCP applications.

Unlike current traffic control tools, our proposed con-
trol mechanism does not forcibly drop incoming pack-
ets, a measure that can induce such undesirable side
effects as frequent TCP timeouts. The principle behind
our mechanism is as follows: we increase the size of the
advertisement window if the traffic rate recently received is
smaller than the target bandwidth, and decrease it if the traffic
rate recently received is larger than the target bandwidth.
With this approach, we can implement the bandwidth
control entirely at the TCP receiver. The sender is not
modified, but it will react to the advertisement window
from the receiver according to TCP flow control.11

11. In order to not hurt a user’s response time with short-lived TCP
flows, the algorithm only runs after 5 secs, during which these short-
lived flows can complete their transfers.

Algorithm 3: Receiver-side TCP rate control.
Initialization:
target BW ← // Desired bandwidth (bytes/sec)
min adv win← 512 (bytes)
adv win← min adv win
last check time← current time (sec)
check period← 0.2 (sec)
bytes← 0 (bytes)

// accumulated received bytes for current period
α← 0.5 // smoothing factor

For each TCP data and ACK packet:
begin

if a data packet is received then
bytes← bytes+ packet len
if current time− last check time > check period then

interval← current time− last check time
throughput← bytes/interval

inc← adv win ∗ target BW−throughput
target BW ∗ α

adv win← adv win+ inc
if adv win > rcv buf size then

adv win← rcv buf size

else if adv win < min adv win then
adv win← min adv win

last check time← current time
bytes← 0

if an ACK packet is ready to be sent then
set the advertisement window of the ACK to adv win

Algorithm 3 presents the pseudo code of our imple-
mentation. The algorithm first initializes the adv wnd to
the default value (min adv win) when the connection is
set up, and periodically calculates the traffic throughput
for each application in each period.12 The throughput is
obtained by dividing the received bytes (bytes) by the in-
terval length (interval). If the throughput for a given pe-
riod is smaller than the target bandwidth (target BW ),
we increase the advertisement window size by an
amount (inc) proportional to the deficit throughput.
Similarly, if the throughput is larger than the target
bandwidth, we decrease the size of the advertisement
window by an amount (dec) proportional to the surplus
throughput. Depending on the increase/decrease of the
advertisement window, the TCP sender will increase or
decrease the rate of the traffic accordingly, assuming
its congestion window is mostly larger than its adver-
tisement window. Here, we multiply the deficit/surplus
bandwidth by a ratio α, in order to reduce the oscillation
of throughput due to the drastic window size changes.
We use α = 0.5 after experimentally determining this
value’s efficacy in achieving the target bandwidth in
several different environments. We prevent the adver-
tisement window size from moving above the maximum
buffer size (rcv buf size) and below minimum window
size (min adv win).

4.2 Experimental Efficacy
To verify Algorithm 3 in practice, we first test our
receiver-side bandwidth control algorithm by running
Iperf over Ethernet, WiFi, and 3G networks. We used
target bandwidths of 100 Kbps, 500 Kbps, and 1 Mbps;
experimental results for the three cases are shown in

12. We set this value to 200 msec. We found this value works well
in various settings after comprehensive experiments.
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TABLE 2
Basic rate control test using Iperf. Parentheses denote

the standard deviations.
Target rate 100 Kbps 500 Kbps 1,024 Kbps

Ethernet 103.8 (0.42) 506.2 (0.42) 1031.2 (1.81)
WiFi 83.14 (3.63) 459 (6.46) 902.4 (21.67)
3G 95.28 (1.52) 474.7 (11.86) 896 (47.28)

TABLE 3
Application rate control test using HTTP and FTP.

Parentheses denote the standard deviations.
Application (rate) HTTP (300 Kbps) FTP (300 Kbps)

Ethernet 297.04 (3.54) 291.2 (4.68)
WiFi 271.12 (10.77) 269.28 (8.27)
3G 296.16 (3.33) 279.2 (4.43)

Table 2. While the bandwidth control algorithm achieves
the target rate in each of the three different networks,
we observe that the rate over the Ethernet link is much
closer to the target rate than the rates over WiFi and
3G: packet loss rate and link jitter are the smallest in
Ethernet.

We also test the algorithm with different applications.
For this experiment, we set the target bandwidth to 300
Kbps and run two applications (HTTP and FTP). Our
results (Table 3) show that the rates achieved are similar
to the target rate.

Finally, we show the time evolution of the advertise-
ment window size rcv wnd and the resulting download-
ing rate in Figure 3 for one FTP flow with a target band-
width of 300 Kbps. The target bandwidth is represented
by a straight green line. The time evolution of rcv wnd
and the rate behave as expected: if the flow rate is
smaller than the target, then the window size increases,
increasing the rate after a delay. The opposite behavior
is seen if the flow rate is larger than the target, but
eventually both the flow rate and window size stabilize.

5 MEASUREMENT
We conduct a measurement study in order to analyze
mobile users’ network usage pattern from the viewpoint
of WiFi offloading. Specifically, in Section 5.2 we show
that the application types considered in Table 1 comprise
a large portion of users’ cellular traffic. In Section 5.3, we
examine the degree to which these applications are al-
ready offloaded and their potential for more offloading.

5.1 Data Collection
To collect empirical traffic data for the measurement
study in this section, we recruited smartphone users
to participate in our trial. We recorded the data by
implementing a usage monitoring app and installing it
on users’ phones. Figure 4 shows the screenshots of the
usage monitoring app, which informed users of their
overall usage over different timescales and usage at
different geographical locations.

We collected application usage data from 20 Android
smartphone users in Alaska for 7 days, including appli-
cation package names and categories and upload and
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Fig. 4. Screenshots of the usage monitoring app.

download usage amounts for each application in bytes.
To compare AMUSE to other offloading algorithms in
Section 6, we also collected another data set from an
additional 12 Android users and 25 iPhone users in the
U.S. This second dataset includes participants’ 3G and
WiFi usage, WiFi availability, and user locations at a ten
minute granularity.13

5.2 Application types

In Section 3, we classify user’s traffic into 5 application
types (i.e. Email, Browsing, Video, Social networking,
Downloads). In this subsection, we verify that these
application types comprise most of users’ traffic by vol-
ume, indicating that AMUSE covers most cellular traffic.
In Tables 4 and 5, we list the top 15 applications for
WiFi and cellular networks, respectively. To identify the
application types, we manually searched for the package
names in the Android application market and used the
application descriptions there. Packages not found in
the Android application market were classified using
the name itself (e.g. com.android.email is classified as
“Email”). Package names that cannot be identified using
these methods are designated as “Unclassified.” In the
case of cellular network, the top five applications corre-
spond to the application types in Table 1, accounting for
54% of the total cellular traffic. From these observations,
we can conclude that our offloading mechanism can
handle a large portion of mobile users’ cellular traffic,
demonstrating the possibility of significantly reducing
the data cost.
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5.3 Offloading practice
From users’ usage traces, we find that users are already
offloading a large portion of their traffic, but a large
amount of video and social networking cellular traffic
still runs over WiFi and can be delayed for offloading.
In Figure 5, we illustrate the amount of upload and
download traffic for each application type in cellular and
WiFi networks. As expected, the amount of WiFi traffic
is much larger than that of cellular, and the amount of
download traffic is larger than the upload traffic.

As in [1], video traffic accounts for the largest por-
tion of traffic for WiFi uploads/downloads and cellular
downloads (74, 70, 49% respectively). For these types of
traffic, the order of the application types according to
the traffic amount is Video, Social networking, Email,
Browsing, and Downloads. In the case of cellular upload,
the traffic amount is in the order of Social networking-
Browsing-Email-Video-Downloads. We find that 84% of
the total upload and 66% of the total download traffic
uses WiFi.

To investigate the fraction of each application’s traffic
that is offloaded to WiFi networks, we calculate the ratio
of WiFi to cellular upload and download traffic for all
the application types, as shown in Figure 6. If this ratio is
large, it means that the users already offload their traffic
to WiFi for that application type, either because that
application type is delay-tolerant or because it requires
WiFi’s high bandwidth (e.g., video applications).

From Figure 6, we see that different application types
show different ratios. In particular, the Video and Down-
load types show large values for both upload and down-
load traffic. This coincides with the small values of µ in
Table 1 for these application types. Video requires high

13. We do not collect iPhone application usage data due to iOS
implementation restrictions.
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bandwidth and has high cost generally, incentivizing
users to wait for WiFi in order to use high bandwidth.
However, by comparing the ratios for Video and Down-
loads, we observe that users wait more for Video than
for Downloads. While a significant fraction of video
and downloads are offloaded, the high delay tolerance
of Download apps indicates that more offloading is
possible.

We also see that the Email and Social networking
applications have some offloading potential. Figure 7
shows CDFs for the number of periods in which a
user uses E-mail and Social networking applications.
We observe that about 40% of users use WiFi data for
Email and Social networking applications 30% of the
time. Over cellular, the data usage frequency decreases,
but 20% of users spend significant amounts of time on
email and social networking. This high usage frequency
indicates that some Email and Social Networking traffic
can be offloaded if a user does not need to wait very
long for WiFi access.

6 EXPERIMENTAL EVALUATION

To evaluate the effects of AMUSE’s Bandwidth Opti-
mizer (Algorithm 2 in Section 3) on users’ offloading
experience, we collected 3G and WiFi usage and mobility
data from an additional 12 Android and 25 iPhone users
over a period of 19 days and one week, respectively,
as explained in Section 5.1. We then simulate the per-
formance of AMUSE’s bandwidth optimizer, taking the
recorded usage data as the historical usage, and compare
AMUSE’s performance with two other known offloading
algorithms in [11]. Our results show that AMUSE can
both reduce users’ spending and improve their utility
compared with these two benchmarks.

6.1 Experimental Data and Settings

Since some of our users exhibited very similar traffic
patterns and some showed very limited data usage, we
choose sixteen representative users’ data on which to
run the AMUSE simulation (eight each for iPhone and
Android). Figures 8a and 8b represent the normalized
cumulative usage of selected iPhone users for cellular
and WiFi, respectively. The normalized cumulative usage
of selected Android users for cellular and WiFi networks
are shown in Figure 9a and 9b. We can observe that the
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Fig. 8. Normalized cumulative usage of iPhone users.
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Fig. 9. Normalized cumulative usage of Android users.
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chosen representative users show diverse usage patterns
in both WiFi and cellular networks. We use three days of
data as each user’s usage history, and run the simulation
assuming hour-long periods. The user’s monthly budget
for 3G data usage is chosen from a truncated normal
distribution between $20 and $40 (2 to 4 GB at a unit
price of $10/GB).

To verify that our three-day training set of data is
reasonable to simulate AMUSE, we test the accuracy
of our WiFi prediction algorithm on this dataset. To do
so, we define the prediction accuracy as follows: if the
probability of WiFi access for a given user in a given
future period is greater (respectively less) than 0.5 and
we observe (respectively do not observe) WiFi access
in that period, we classify the prediction as “accurate.”
Otherwise, we call the prediction “inaccurate.” We then
divide the number of accurate predictions by the total
number of predictions for each user to find the predic-
tion accuracies. As shown in Figure 10, we observe a 64 –
90% prediction accuracy for the eight iPhone users and a
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Fig. 12. WiFi access frequency per a day of each iPhone
user.

67 – 97% accuracy for the eight Android users. To further
inspect the prediction accuracy, we tested the algorithm
on other open mobility traces. We used the data of 21
users who have enough records needed for prediction
from the dataset collected in the LifeMap project [31].
We obtained similar accuracy as on our dataset (64 –
95% accuracy).

We show the WiFi access frequency per a day of
each iPhone user in Figure 12. Except user 1, each
user has a similar WiFi access frequency for each day.
We show the number of different locations per a day
where WiFi network is accessed in Figure 11. We can
observe that each user accesses the WiFi network within
a small number of locations. These results coincides with
assumptions of our location dependent WiFi prediction
method.

6.2 Baseline Algorithms
We compare AMUSE’s performance to two baseline al-
gorithms: on-the-spot offloading and delayed offloading
[11].

On-the-spot offloading offloads traffic to WiFi oppor-
tunistically: users send their traffic over WiFi if they are
connected to a WiFi network at that time, and switch
to 3G if they move outside of the WiFi coverage area.
No sessions ever wait for WiFi, which may lead to
higher spending as compared with AMUSE – AMUSE
allows delay-tolerant sessions to wait for WiFi, thus



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, MONTH 2014 12

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm
 0

 1

Tr
af

fic
 A

m
ou

nt
 (

KB
)

W
iF

i A
va

ila
bi

lit
y

Time

WiFi Availability
Traffic Demand

AMUSE
On-the-spot

Delayed

Fig. 13. An example traffic demand and cellular usage
amount under each offloading algorithm.

saving users money. The delayed offloading algorithm
forces all traffic to wait up to a fixed time limit for
WiFi access (1 hour in our simulations). If WiFi becomes
available before this time, the waiting traffic is sent over
WiFi; otherwise, it is sent over 3G. While this algorithm
may offload more traffic than AMUSE and thus save
users money, it does not consider users’ delay tolerances:
even urgent sessions are forced to wait for some time.
Moreover, if WiFi is not available at the end of the fixed
time limit, the sessions will complete over 3G anyway,
costing users money and making them wait.

In Figure 13, we show an illustrative example scenario
that explains how AMUSE operates compared to other
algorithms in making offloading decisions. Figure 13 il-
lustrates the cellular traffic demand and WiFi availability
of one user for 8 hours. At 1pm, the traffic demand is
larger than other times, and WiFi is available at 3pm
and 7pm. The amount offloaded with each offloading
algorithm can be calculated from the difference in total
demand and traffic for each algorithm. Since AMUSE
predicts the WiFi availability and delays longer than 1
hour if the utility is increased, it offloads a considerable
amount of the traffic in 1pm to 3pm. On the other
hand, On-the-spot offloading offloads only the traffic
at 3pm and 7pm when the WiFi is available. Delayed
offloading offloads more than On-the-spot offloading
by delaying the traffic of 2pm and 6pm to 3pm and
7pm, respectively. However, since it cannot predict the
WiFi availability of 3pm at 1pm, it cannot delay the
traffic of 1pm to 3pm, thus losing the opportunity to
offload. Moreover, since it blindly delays the traffic by
one hour if the WiFi is not available, the traffic of 12,
1, 4, 5pm is delayed but ultimately transmitted by 3G,
decreasing users’ utility. AMUSE, on the other hand,
does not always prefer offloading to transmitting on 3G
network. For example, AMUSE delays only some traffic
at 1pm, since the expected utility of transmitting over
3G is larger than that of waiting for higher bandwidth
and lower cost WiFi.

6.3 Numerical Results
Figure 14 plots the distributions of relative utility values
under our benchmark algorithms compared to those un-
der AMUSE. For each user, both benchmark algorithms
decrease the utility. This decrease is particularly dramatic
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Fig. 15. CDF of relative offloaded traffic amount and
amount spent compared to AMUSE.

for one user, whose utility values with on-the-spot and
delayed offloading are only 8 and 23%, respectively, of
the utility under AMUSE. On average, the utility of on-
the-spot offloading is 19% less than that of AMUSE,
while that of delayed offloading is 22% lower.

AMUSE yields higher utility values than on-the-spot
offloading due to offloading more traffic onto WiFi: Fig.
15 shows the distributions of relative amounts of traffic
offloaded under both benchmark algorithms, as com-
pared to AMUSE. We see that for all users, the amount
of traffic offloaded is larger under AMUSE than it is
under on-the-spot offloading; thus, AMUSE leverages
the delay tolerance of some sessions by allowing them to
wait for WiFi access. Users then save money: Fig. 15 also
compares users’ amount spent under the two benchmark
algorithms to that spent with AMUSE. Users consistently
spend over 20% more with on-the-spot offloading, and
on average increase their spending by 33% compared
with AMUSE.

Compared to delayed offloading, AMUSE trades off
between reducing users’ spending by offloading traffic
and completing some sessions immediately due to their
intolerance of delay. Figure 15 shows that delayed of-
floading offloads more traffic than AMUSE for 10 users:
AMUSE sends some sessions over 3G without waiting
for WiFi, allowing users to spend more and delay less.
One user offloads nearly 160% more traffic under de-
layed offloading relative to AMUSE. The consequent
decrease in cost relative to AMUSE (nearly 80%) is offset
by less delay under AMUSE; this user in fact experiences
5% less utility under delayed offloading than that under
AMUSE. On the other hand, delayed offloading offloads
less traffic than AMUSE for 6 users: AMUSE allows
delay-tolerant traffic to wait more than an hour for WiFi.
We found that this additional wait for WiFi reduces
these users’ spending, offsetting the loss in utility from
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delaying the session.
Finally, we examine AMUSE’s benefits for different

types of users. We split 16 users into “heavy” and “light”
usage groups (8 users for each group), and plot the
amount offloaded, utility, and cost of the two benchmark
algorithms relative to AMUSE in Fig. 16. For heavy
users, both benchmark algorithms perform worse than
AMUSE: users’ utility and amount offloaded decrease
under these algorithms, while their cost increases. Thus,
AMUSE’s cost savings in offloading more traffic offset
any loss in utility from waiting more for WiFi access. On-
the-spot offloading performs especially poorly compared
to AMUSE, indicating that most users’ delay tolerance
enables them to gain utility under AMUSE by selectively
delaying some sessions and sending them over WiFi.
For light users, AMUSE weights the cost savings from
waiting for WiFi less heavily: some sessions do wait for
WiFi, as shown by the decrease in amount offloaded in
on-the-spot offloading, but delay-intolerant sessions do
not wait, as shown by the increase in amount offloaded
in delayed offloading. This likely arises from light users’
looser budget constraint: by definition, light users spend
less than heavy users on their data consumption. They
accordingly benefit less overall: compared with AMUSE,
the utility of heavy users decreases by 27% under the
benchmark algorithms, while that of light users de-
creases by 14%.

7 CONCLUSION

In this paper, we propose AMUSE, a cost-aware WiFi
offloading system that maximizes the end user’s utility
under her 3G budget constraints. AMUSE consists of
two main components: a bandwidth optimizer and a
TCP rate controller. By predicting future usage and WiFi
availability, the bandwidth optimizer chooses how long
an application should wait for WiFi access, as well as
a 3G data rate should WiFi not be available. These
choices are optimized so as to balance the user’s trade-
offs between the cost of sending an application’s traffic
over 3G, the higher throughput received over WiFi, and
the delay inherent in waiting for WiFi. The TCP rate
controller practically enforces the 3G rates chosen for
each application by controlling the TCP advertisement
window from the user side. AMUSE also allows for end-
user interaction by providing a user interface through
which users can set their bandwidth allocation prefer-
ences and view the offloading decisions made. Through

a measurement study, we show that though a large
amount of some applications’ traffic is offloaded already,
our offloading framework can offload a larger portion of
mobile users’ cellular traffic.

We prototyped AMUSE and evaluated its performance
with mobile traces from 37 users. Our results show
that AMUSE can improve both heavy and light data
users’ utility from offloading; for heavy users, two other
representative WiFi offloading algorithms achieve 27%
lower utility than AMUSE on average. Heavy users’
costs were on average 18 and 36% higher under these
benchmark algorithms compared to AMUSE, a savings
realized by offloading more traffic onto WiFi. Though
our results are based on data from a limited number of
users, we expect similar performance from a wider range
of users.
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APPENDIX A
EXTENSION OF USERS’ OPTIMIZATION PROB-
LEM
Our optimization problem in Section 3.3.2 assumes a

constant speed for WiFi and prefers WiFi to 3G as long
as WiFi is available. However, we can extend it to choose
the WiFi speed for each application subject to a time-
and location-varying maximum WiFi bandwidth (e.g.,
home WiFi is generally more stable than WiFi at a coffee
shop). In this case, users can choose to use either 3G
or WiFi instead of automatically using WiFi when it is
available. Thus, users must account for the speed, cost,
delay, and traffic amount for 3G and WiFi and choose
the interface that yields the highest utility. The user’s
modified optimization problem is as follows:

max
cji (k,γ,δ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(∑
δ∈∆

(
Uj
(
0, k − i, δ, sj(i)

)
+

Uj
(
p, k − i, γ, sj(i)

))
cji (k, γ, δ)

)))]

s.t. p

n∑
i=1

[ ∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cij(k, γ, 0)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cij(k, γ, 0)γsj(i)

] ≤ B
∑
i≤l

∑
j∈J

∑
γ∈Γ

cij(l, γ, 0)γ ≤ β ∀ l∑
i≤l

∑
j∈J

∑
δ∈∆

cij(l, 0, δ)δ ≤ α(l)∀ l (10)∑
k≥i

∑
γ∈Γ

∑
δ∈∆

cij(k, γ, δ) = 1 ∀ j ∈ J ; i = 1, 2, . . . , n

cij(k, γ, δ) = 0,∀γ > 0, δ > 0 (11)

cij(k, γ, δ) ∈ {0, 1} .

We change the indicator variables cji (k, γ) to cji (k, γ, δ) so
that WiFi speed δ can be chosen. The WiFi speed δ is cho-
sen from a finite subset of possibilities ∆. Here, ∆ and
Γ include 0 so that we can represent the case when the
WiFi and 3G are not used. We add a capacity constraint

on the WiFi bandwidth in (10). α(l) is the predicted WiFi
bandwidth in period l. We limit the rate allocation so that
only one network is chosen in (11). We expect that the
WiFi bandwidth prediction algorithm can be designed
by modifying the Algorithm 1 so that vk(l) represents
the product of WiFi probability and bandwidth at time
k and location l, and the expected available bandwidth
at each time is updated using empirical data.

This formulation can be modified into a second
optimization problem to be solved in each period to
choose the final 3G and WiFi bandwidths for applica-
tions scheduled to that period. For all application types
j originated in period i where

∑
γ∈Γ

∑
δ∈∆ cji (k, γ, δ) > 0

for the current period k, we solve following problem:

max
cji (k,γ,δ)

∑
γ∈Γ

(∑
δ∈∆

(
Uj
(
0, k − i, δ, sj(i)

)
+

Uj
(
p, k − i, γ, sj(i)

))
cji (k, γ, δ)

)
s.t. p

∑
γ∈Γ

cij(k, γ, 0)γ ≤ β∑
δ∈∆

cij(k, 0, δ)δ ≤ α(k)∑
γ∈Γ

∑
δ∈∆

cij(k, γ, δ) = 1

cij(k, γ, δ) = 0,∀γ > 0, δ > 0

cij(k, γ, δ) ∈ {0, 1} .

If the bandwidth constraints are violated, we can simply
scale down the bandwidths assigned to different appli-
cations so as to satisfy the constrains as we discussed in
footnote 10. Instead, we may delay some applications to
later periods, if we use the original formulation.

APPENDIX B
TOP 15 APPLICATIONS FOR WIFI AND CELLU-
LAR NETWORKS

Tables 4 and 5 show the 15 most-used applications on
WiFi and cellular networks, respectively.
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TABLE 4
Top 15 applications in WiFi network.

Index Package name Upload(%) Download(%) Total(%) Type

1 Streaming Media 70.20 66.38 68.14 Video
2 android.process.media 3.28 3.26 3.27 Video
3 com.google.android.music:main 3.22 2.77 2.98 Unclassified
4 com.google.android.music:ui 3.20 2.75 2.96 Unclassified
5 com.android.email 2.46 2.59 2.53 Email
6 com.emogoth.android.phone.mimi 2.67 2.29 2.46 Social networking
7 com.marvel.capinstaller 1.77 1.52 1.63 Downloads
8 com.android.browser 1.23 1.69 1.48 Browsing
9 com.clearchannel.iheartradio.controller 1.48 1.27 1.37 Unclassified

10 com.facebook.katana:providers 1.07 1.30 1.19 Social networking
11 com.facebook.katana 0.93 1.31 1.13 Social networking
12 com.motorola.process.system 0.05 2.04 1.12 Unclassified
13 com.rhythmnewmedia.android.e 0.81 1.10 0.97 Unclassified
14 com.ninegag.android.app 0.69 0.65 0.67 Unclassified

Others 6.93 9.10 8.10 -

TABLE 5
Top 15 applications in cellular network.

Index Package name Upload(%) Download(%) Total(%) Type

1 Streaming Media 5.70 42.64 33.77 Video
2 com.android.email 5.64 5.59 5.60 Email
3 android.process.media 4.03 5.96 5.50 Video
4 com.facebook.katana 7.47 3.86 4.73 Social networking
5 com.android.browser 6.78 3.33 4.16 Browsing
6 com.google.android.music:main 0.04 5.27 4.01 Unclassified
7 com.facebook.katana:providers 6.30 2.51 3.42 Social networking
8 com.rhythmnewmedia.android.e 5.26 1.99 2.78 Unclassified
9 com.pandora.android 4.69 1.49 2.26 Unclassified

10 com.noinnion.android.greader.reader 4.42 1.40 2.12 Unclassified
11 com.motorola.blur.service.main 2.89 1.00 1.45 Unclassified
12 com.motorola.contacts 2.89 0.94 1.41 Unclassified
13 com.alphonso.pulse 2.17 1.07 1.33 Social networking
14 com.motorola.process.system 0.35 1.64 1.33 Unclassified
15 com.clearchannel.iheartradio.controller 1.07 1.25 1.21 Unclassified

Others 40.28 20.08 24.93 -


