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Abstract—Fog computing paradigm has introduced the con-
cept of processing data near the data source. Unlike the cloud,
fog computing includes devices with highly varying resources
such as heterogeneous computing power, battery, bandwidth,
delay, and mobility. The existing distributed computing frame-
works, however, have mainly focused on the cloud environment
where resources are highly consolidated and stable. This paper
presents Crystal, a distributed computing framework for fog. An
application consisting of one or multiple Crystal instances offers
distributed processing and computing while taking advantage
of location transparency, self-healing, auto-scaling and mobility
support. Our prototype implementation of MapReduce on Crys-
tal shows benefits of fog computing — fault-tolerant distributed
processing over heterogeneous, unreliable, fog nodes while
reducing overall latency, thanks to the framework enabling
processing close to the data source.

I. INTRODUCTION

Cloud computing has made a great success and brought
the concept of everything-as-a-service (XaaS) model [1], [2].
Fog computing [3], [4], [5] is a new computing paradigm [6],
[7], in which computing and processing can leverage nodes
closer to where the data is generated (e.g., end-user and edge
devices) in the cloud-to-things continuum. As a result, fog
has its advantages over cloud because of its proximity to the
‘ground’ [8]:

o Security: Exploiting proximity of fog resources closer

to users reduces a chance of data breach.

o Cognition: Awareness of client-centric objectives en-
sures a better understanding of user demand.

o Agility: Fog supports a rapid innovation and scale using
available fog resources in the cloud-to-things contin-
uum.

o Latency: Leveraging fog resources closer to users pro-
vides low and predictable latency to data processing
applications.

« Efficiency: Fog computing reduces the overhead of the
cloud and the network core by processing data locally.

The existing distributed computing / processing frame-
works in the cloud, such as MapReduce [9], however, are not
directly applicable to fog [10], [11]; the cloud has mostly ho-
mogeneous computing nodes, well-structured network topol-
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ogy, and reliable network connectivity, while the fog has
to deal with the other extremes, such as heterogeneous
computing nodes with high churn rates and unstructured
networks with frequent disruptions.

This paper proposes Crystal, a distributed computing /
processing framework for fog. Crystal provides an easy
abstraction for fog application development while supporting
location-transparency, self-healing, auto-scaling and mobility
support. The proof-of-concept implementation of Crystal is
evaluated by designing a MapReduce framework for fog. The
performance results show that MapReduce on Fog, compared
to Cloud, gives the benefit of reduced completion time and
power consumption, thanks to its computing / processing
close to the data source.

II. DESIGN CONSIDERATIONS

Developing a fault-tolerant fog application spanning over
fog nodes requires high programming complexity and deal-
ing with all the exceptions and failures, inevitably leading
to complicated application development process. To tackle
these issues, the proposed fog computing framework Crystal
provides an easy abstraction for fog application development.
The name Crystal is derived from ice fog, a type of fog
composed of tiny ice crystals suspended in the air. Similarly,
in Crystal framework, a fog application is composed of mul-
tiple components called Crystals spanning over fog nodes.
Crystals are loosely-coupled components, each of which can
run a standalone component, and they communicate each
other through message passing. The functional definition
of a Crystal component can vary from function-level to
microservice-level depending on its roles in a fog application.

The proposed Crystal framework follows ’let it disappear’
philosophy to reflect the inherently unreliable nature of fog
where any node can leave and join at any moment. Whenever
a fog node disappears from the fog by any reason, a fog
application consisting of Crystals automatically heals by
exploiting available fog and/or cloud nodes. Thus, developers
can use Crystals as building blocks for fog applications with-
out concerning failures of fog nodes. A fog application using
Crystals can take full advantage of location transparency,
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Fig. 1. Crystal Design Properties

self-healing, auto-scaling and mobility support (Figure 1)
described below:

Location Transparency: Crystal components should be
able to run on any node at any time. While the location of
each Crystal instance may affect the overall performance of a
fog application, it should not affect the context of the applica-
tion. The concept of Crystal’s location transparency enables
a fog application to be easily decomposed and deployed
over a pool of fog nodes. Also, location transparency gives
developers an illusion that a fog application development is
more like a local application development.

Self-Healing: Crystal components should embed a self-
healing functionality to survive in fog environment. Fog’s
highly unreliable and unpredictable nature imposes a signif-
icant burden on developers to deal with all the exception
and error handlings. Crystal assumes that any node can fail
at any moment in fog. In that sense, Crystal components
keep monitoring and respawning each other for self-healing,
rather than expecting developers to program an error-free fog
application. A fog application can be presented as a directed
acyclic graph according to the communication patterns of
its Crystals. When a parent Crystal detects a failure from
its child Crystal instance, it automatically re-creates it on
another fog node. All of these procedures are transparent to
the user application, and also to the user code.

Automatic Scaling: Crystal components should automat-
ically scale out and scale in when a Crystal instance is
busy or idle, respectively. In case of a stateless Crystal
instance, Crystals are seamlessly scaled out and scaled in
by creating or killing replicated Crystal instances. Messages
to the replicated Crystal instances are automatically load-
balanced. In case of a stateful Crystal instance, its state is
written to a distributed data store and accessed by replicated
Crystal instances.

Mobility Support: Crystal components should move from
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Fig. 2. Overview of Fog Computing with Crystal
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one fog node to another when migration is required. With
Crystal’s mobility, a fog application consisting of Crystals
can dynamically expand itself from things, to the fog, to the
cloud, and also vice versa. When a Crystal instance of a fog
application does not meet the minimum running requirements
anymore (e.g., lack of resources, or location change), it finds
an adequate fog node and migrates to the node. Crystals
are responsible for delivering the messages designated to the
migrated Crystal instance and it is transparent to the user
code.

III. CRYSTAL: A FOG COMPUTING FRAMEWORK

Figure 2 shows the overall architecture of Crystal-based
fog computing. When a fog application is initiated, it is
decomposed into subtasks by the fog agent. The fog agent
then transforms the subtasks into standalone and deployable
Crystal instances. To deploy these Crystal instances, the fog
agent first sends a resource request to a fog tracker which
tracks the list of fog nodes and their resource availability.
According to each Crystal instance’s resource requirements,
the fog tracker sends back the list of most adequate fog nodes.

A. Fog Agent

A fog agent is a lightweight software runtime running on
a fog node. Fog agents register themselves to a fog tracker
and update their resource status. By cooperating each other,
geographically close fog agents build up a fog cluster. Fog
agent is the key enabler which provides location transparency,
self-healing, automatic scaling and mobility properties to
Crystal instances.

A fog agent is in charge of decomposition, crystallization
(the process of transforming subtasks into standalone and
deployable Crystal instances), and deployment of a fog appli-
cation. When an application is initiated on a fog node, it first
decomposes the application into subtasks. Decomposition can
be performed in both automatic and manual approach. In the
automatic decomposition process, the application needs to
follow an object-oriented programming model. To make each
object a standalone component, each object is wrapped by a
new main function, and the communication between objects
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Fig. 3. DAG Representation of Fog Applications

is replaced by remote procedure calls or message passing.
In this approach, the application is decomposed into object-
level. Each object becomes a subtask which later becomes a
Crystal. In the manual approach developers are expected to
decompose an application into subtasks.

To reduce the burden on the fog application developers,
an automatic orchestration is provided by fog agents. When
a fog application is deployed over fog nodes, the fog appli-
cation can be described as a directed acyclic graph (DAG)
of Crystals. An example DAG representation of the fog
application is shown in Figure 3. When a fog agent is hosting
a Crystal instance the fog agent is responsible for taking care
of the Crystal’s child Crystal instances. A fog agent monitors
its child Crystal instances on its child fog agents. When a
child Crystal instance fails, the parent fog agent immediately
respawns the failed Crystal instance. For example, when
Node 3 fails, the fog agent on Node 1 respawns Crystal B
(Fog App 1), and the fog agent on Node 2 respawns Crystal
F and G (Fog App 2). Also, a parent agent performs scale
out or migration when a child Crystal instance suffers from
insufficient resources, or when the fog node does not meet
the Crystal instance’s resource requirements anymore.

B. Fog Tracker

To easily discover available fog resources, we borrow the
concept of trackers in peer to peer networks. A fog tracker is
a node which keeps tracks of the list of fog nodes and their
available resource information, similar to BitTorrent’s tracker
server [12], [13]. Fog resource information in a fog tracker
includes CPU, RAM, Storage, operating system, mobility,
battery, location information, etc. When a fog runtime (fog
agent) is initialized on a fog node, it registers itself to a fog
tracker and periodically sends health-check messages to the
fog tracker. When fog resources are queried by a fog agent,
the fog tracker first looks at the application’s requirement and
finds out the most appropriate fog resources. The selected fog
resources will be notified to the fog agent who requested the
resource. Ideally, a fog tracker is expected to keep track of
nodes in a fog cluster. For example, a campus fog tracker

Fig. 4. Fog MapReduce Sequence Diagram with Fog APIs

can build a campus-wide fog cluster, and let fog applications
leverage fog resources in the campus.

The proposed fog tracker system supports tracker-to-
tracker communication for the sharing of peer list among fog
clusters. A fog tracker shares its fog node list to other fog
trackers. That is, tracker-to-tracker communication eventually
enables a fog node to see the global view of fog resources.
A fog tracker in the cloud with a cooperation of the existing
resource managers (i.e. YARN [14] and Mesos [15]) makes
it possible for fog agents to leverage cloud resources. In this
way, fog node not only utilizes the resources in the fog cluster
it belongs to, but also exploits resources from any other fog
clusters (fog-to-fog federation) or cloud clusters (fog-to-cloud
federation). A hierarchical tracker (hierarchical fog cluster)
architecture can be used for better scalability.

A fog tracker also provides a naming system for both fog
nodes and Crystal instances. For location transparency and
mobility support, Crystal instances are referred as unique
names, not by its physical addresses. This naming system
separates the physical location of a Crystal instance, from
its identifier. A Crystal instance’s name does not change,
even if its actual location changes. When it moves to another
fog node, by updating its new location information in the
tracker, other Crystal instances can still communicate with
the Crystal.

C. Programming Interfaces

Table I and II present fog programming interfaces and
fog event handlers, respectively. Even though Crystal compo-
nents support self-healing, automatic scaling, and seamless
mobility under the hood, developers can still implement
explicit failover, scaling, and migration functionalities to pro-
vide fine-grained orchestration for their Crystal components.

IV. APPLICATION: FOG MAPREDUCE

As an application leveraging the proposed Crystal frame-
work, we present Fog MapReduce, a distributed data pro-
cessing framework for fog environment. The main goal of
Fog MapReduce is to support MapReduce applications over
fog nodes in order to process data closer to where it is
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TABLE 1
FOG PROGRAMMING INTERFACES
[ Operation Description
send Send a message to a Crystal

receive
stayInCloud

Receive a message and process it
Crystal will stay in the cloud

//MapReduce source code of main.go

package main
import "fog/mr"
func main () {
mr.New () .OpenFromText ("data_source") .
Filter (func(line string) bool {
return strings.HasPrefix(line, "[VALID]")
1) .
Map (func(key string) int {
return 1

b -

Reduce (func (x int, y int) int {

return x + y

1.

Map (func(x int) int {
return X

1.

Run ()

stayInFog Crystal will stay in the local fog cluster
stayInThing Crystal will stay in the client node
where it was created
moveToCloud Crystal will move to the cloud
moveToFog Crystal will move to the fog
moveToThing Crystal will move to the client node
replicateCrystal Scale out a Crystal and do load balancing
spawnCrystal Create a Crystal instance on a node
migrateCrystal Migrate a Crystal instance to a node
checkpointCrystal Save the state of Crystal
respawnCrystal Re-create a Crystal from a checkpoint
killCrystal Terminate Crystal instance
getCrystal Get name of Crystal
getCrystalList Get the list of Crystals for an application
getCrystalParent Get the list of Crystal’s parent Crystals
getCrystalChild Get the list of Crystal’s child Crystals
getCrystalLocation ~ Get location information of a Crystal
getCrystalLatency Get latency from a Crystal to another
getNode Get name of a fog node
getNodeList Get the list of fog nodes in the fog cluster
getNodeLocation Get location information of a node
getNodeLatency Get latency from Crystal to a fog node
getFog Get name of the local fog cluster
getFogList Get the list of fog clusters
getFogLocation Get location coverage of a fog cluster
getFogLatency Get latency from Crystal to a fog cluster
setLatency Set latency limit a Crystal has to guarantee
setStorage Set storage limit a Crystal can use
setMemory Set memory limit a Crystal can use
setCPU Set CPU limit a Crystal can use
TABLE I
FOG EVENT HANDLERS
[ Event Description
onCreate New Crystal created
onFailure Crystal failed
onKill Crystal killed
onMigrate Crystal migrated
onReplicate Crystal replicated
onHighLatency  Average Latency is higher than limit
onLowCPU Node running out of CPU
onLowMemory  Node running out of memory
onLowStorage Node running out of storage

generated. Processing data near the data source brings a
lower response time and a better privacy for sensitive data.
However, fog nodes are likely to join and leave frequently
during task execution. In that sense, Fog MapReduce is
designed to fully utilize the proximity of fog nodes for
data processing while dealing with unreliability. Existing
MapReduce frameworks adopt a centralized master-worker
architecture. However, this architecture does not consider or
deal with failures of the master because the master-worker
architecture is expected to run on a reliable computing node.
When the master fails, workers are not able to communicate
with the master anymore, which results in the failure of the
whole MapReduce application. On the other hand, the master
and workers in the Fog MapReduce are implemented by
Crystals components. Both the master and workers inherit
Crystal’s properties so that a node failure does not stop

a MapReduce application. Figure 4 describes how a Fog
MapReduce application works. Whenever a user MapReduce
application is initiated, a new master Crystal instance is
spawned on a fog node. This master then starts to perform
job scheduling and spawn MapReduce-related Crystals such
as mappers and reducers to other fog nodes. The MapReduce
Crystal instances then process data in a distributed way and
the final result is sent back to the collector Crystal. The
result can be sent to a cloud storage for availability or future
analysis. A Fog MapReduce word count example code is
described above.

V. IMPLEMENTATION

This section describes implementation details of the pro-
totype Crystal fog computing framework. The overall system
is written in Golang. To implement Crystal that can run
on heterogeneous fog nodes, each Crystal component is
containerized before deployed over fog nodes. Containerizing
a Crystal instance also achieves isolation of each Crystal
from others. For the containerization, the de-facto industry
standard Docker is used. To make the task decomposition
process faster, containerization is done by using a minimized
base image with around 4MB. For those platforms not
supported by Docker (e.g., IoT and mobile platforms), fog
agents cross-compile those Crystals for the target platforms.

For the message delivery among Crystals, and also among
fog agents, nats distributed message queue is modified.
Because of the unreliability of fog environment, successfully
delivering a message between two fog nodes is not always
easy. Also, many mobile fog nodes are located behind Net-
work Address Translation (NAT), which makes direct com-
munication between two mobile nodes even more tricky. To
deal with the guaranteed message delivery and NAT traversal,
the proposed framework exploits some strong fog nodes as
message brokers. Those strong fog nodes have relatively
reliable network connectivity, less mobility, and sufficient
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computing resource. This message brokers guarantee that
messages are fault-tolerant and at-least-once delivered.

Fog tracker is implemented on top of distributed key-value
store etcd to avoid a single point of failure. This distributed
key-value store keeps track of fog nodes and their resource
information. The naming system is also implemented with
the distributed key-value store. It keeps the match between a
name of each Crystal and the corresponding location.

VI. EVALUATION

Evaluation of the prototype is performed on a mobile
device, three fog nodes, and three cloud nodes. For each fog
node, a VM equipped with a Quad-core Intel Xeon CPU E5-
2697 at 2.70GHz and 4GB RAM, running Ubuntu 16.04.1, is
used. For each cloud node, an Amazon AWS EC2 m4.large
(US East, Northern Virginia) server equipped with 6.5 EC2
Compute Units with 8GB RAM, running Ubuntu 16.04
LTS, is used. For the mobile device, a Samsung Galaxy S6
equipped with Octa-core CPU (4x2.1 GHz ARM Cortex-A57
& 4x1.5 GHz ARM Cortex-A53) and 3GB RAM, running
Android 6.0.1, is used. The mobile device is connected to
Princeton University’s campus Wi-Fi network during the
experiments.

Figure 5 shows performance evaluation of application
decomposition using Crystal. Figure 5a evaluates the com-
pletion time of a word frequency count with a 30MB text
file. When the job is processed only on the mobile device,
it takes for around 45s to finish the task. When the task is
decomposed to the fog, the completion time is reduced by
more than 63%. When the task is decomposed to the cloud,
the completion time is reduced by 58%. Computation time
out of the total completion time is 5.420s for the fog, and
5.184s for the cloud. Network time out of the completion
time is 11.040s for the fog, and 13.741s for the cloud. Figure
5b measures the power consumption of the mobile device
during the word frequency count. When the task is processed
only on the mobile device, it consumes 3.1 mAh, but the
power consumption is decreased to 1.2 mAh when the task
is decomposed to the fog. When the task is decomposed to
the cloud, it takes 1.8 mAh of power consumption. This
result shows that fog environment can provide reasonable
computing capability with lower network latency compared
to the cloud. Also, it indicates that utilizing fog resources
can increase the computing / processing performance of
IoT and mobile applications, and also reduces their power
consumptions.

Figure 6 shows performance comparison between Fog
MapReduce and Apache Spark 1.6.0. A MapReduce word
frequency count job is executed over three fog nodes because
Spark does not support heterogeneous nodes such as IoT
and mobile devices. Both Spark and Fog MapReduce are
running on Docker containers for the fair comparison. Data
for MapReduce job is assumed to be distributed on the
nodes. Fog MapReduce still shows similar completion time
compared to Spark (Figure 6), although it is designed to work
on highly heterogeneous and unreliable nodes.
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VII. RELATED WORK

Crystal’s location transparency is inspired by the actor
programming model [16], [17], and its self-healing prop-
erty is inspired by various distributed computing systems
[18], [19], [20], [21]. For mobility support, the concept
of locator/identifier separation [22], [23], [24] is adopted.
Programming models for mobile applications were studied
in [25], [26].

The design of a fog tracker is partially inspired by the
concept of BitTorrent’s tracker functionality [12], [13]. Wide-
spread adoption of peer to peer networks has proven the
effectiveness of tracker nodes that keep track of the list of
peer nodes.

Many advanced data processing frameworks have been
introduced after the success of MapReduce [9], but those
frameworks are designed and expected to run on reliable
computing environment (e.g., cloud). Fog MapReduce pro-
vides MapReduce over unreliable computing nodes [27] and
realizes data processing near the data source.

VIII. CONCLUSION

This paper proposes Crystal, a distributed computing
framework for fog applications. Its ‘let it disappear’ phi-
losophy frees developers from struggling with exception
and error handlings for highly unreliable fog environment.
Crystal allows developers to easily build a sustainable fog
application by using a Crystal instance as a building block.
Fog applications made up of Crystals can fully support lo-
cation transparency, self-healing, auto-scaling, and mobility,
which significantly reduces programming complexity. With
the proposed Crystal framework, applications can leverage
fog resources along the cloud to things continuum by al-
lowing decomposed components of an application to reside
across the things, fog, and cloud.
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