
Computer Networks 133 (2018) 90–103

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A Practical Evaluation of Rate Adaptation Algorithms in HTTP-based

Adaptive Streaming

Ibrahim Ayad, Youngbin Im

∗, Eric Keller, Sangtae Ha

University of Colorado, Boulder, United States

a r t i c l e i n f o

Article history:

Received 16 July 2017

Revised 14 January 2018

Accepted 16 January 2018

Available online 3 February 2018

Keywords:

HTTP-based Adaptive Streaming

Dynamic Adaptive Streaming over HTTP

MPEG-DASH

Evaluation

a b s t r a c t

The HTTP-based Adaptive Streaming (HAS) techniques are widely used in Internet video streaming ser-

vices, including YouTube and Netflix. The Dynamic Adaptive Streaming over HTTP (DASH) is the latest

international standard that facilitates the interoperability of different HAS techniques of various vendors.

DASH specification defines the media presentation description (MPD), which describes a list of available

content, URL addresses, and the segment format. The rate adaptation algorithms, however, are not part of

the standard, and the details of the algorithms are left to vendors. As a result, there are many different

algorithms adopted in both commercial and open source players while the detailed algorithms and their

performance are barely understood. In this paper, we investigate the detailed operations of the differ-

ent players by code level analysis and through reverse engineering. Specifically, we present the pseudo

codes of 3 open source players and devise a method to obtain the detailed operation information, e.g.,

bitrate and buffer amount, of popular streaming players whose source codes are not publicly available.

We conduct extensive experiments on our testbed and provide suggestions based on the behaviors of

these players, including the repeated over-estimation of the available bandwidth, unfair bitrate selection

when multiple players compete for the bandwidth, and insensitivity of Quick UDP Internet Connections

(QUIC) protocol to the varying network bandwidth.

© 2018 Elsevier B.V. All rights reserved.

d

Y

w

S

t

t

r

o

h

t

e

t

c

i

a

w

F
1. Introduction

Recent studies show that video traffic on the Internet has

grown exponentially over the years. Cisco [1] anticipated consumer

Internet video traffic will be 80 percent of all consumer Internet

traffic in 2019, up from 64 percent in 2014. It will reach 89,319

petabytes (one petabyte equivalent to one million gigabytes) per

month in 2019. This increase in video traffic is mainly due to re-

cent developments of devices and streaming technologies for video

services.

Initially, Internet video streaming was implemented by using

traditional streaming protocols such as Real Time Protocol (RTP)

over User Datagram Protocol (UDP). But since firewalls usually

block UDP packets in the networks, making it hard to deliver the

content to the users, the use of HTTP over TCP for video stream-

ing was the natural next step for the streaming industry. In fact,

HTTP provides several advantages over its predecessors. It enables

the reuse of existing web infrastructure such as web proxies and

content distribution networks (CDNs). The HTTP-based progressive
∗ Corresponding author.

E-mail addresses: ayad.ibrahim@colorado.edu (I. Ayad), youngbin.im@colorado

.edu (Y. Im), eric.keller@colorado.edu (E. Keller), sangtae.ha@colorado.edu (S. Ha).

o

c

o

e

https://doi.org/10.1016/j.comnet.2018.01.019

1389-1286/© 2018 Elsevier B.V. All rights reserved.
ownload was used for video dissemination as was leveraged by

ouTube in its early days, but it had no adaptability to varying net-

ork conditions, leading to the adoption of HTTP-based Adaptive

treaming (HAS) solutions.

In HAS, the video is segmented into several-second time in-

ervals (2 to 10 seconds, typically) and encoded into multiple bi-

rates. Then the HAS client selects the best bitrate that fits the cur-

ent network conditions. The MPEG Dynamic Adaptive Streaming

ver HTTP (DASH) [2] is a standard for HAS solutions. MPEG-DASH,

owever, standardizes only the meta information of the video con-

ent, specifying the details of each video segment such as duration,

ncoding rates, and the URL address, not the rate adaptation [3] .

Even though extensive work has been done in the HTTP adap-

ive streaming arena, earlier experimental works [4–6] only fo-

us on the performance of streaming players in constrained exper-

mental scenarios. They do not perform a detailed study of rate

daptation algorithms, which are player specific and thus are not

ell-known. Our work differs from previous works in several ways.

irst, while many of the previous HAS evaluation works centered

n the comparison of proprietary HAS players, our evaluation also

overs systems developed under the MPEG DASH standard. Sec-

nd, the operational information of commercial streaming play-

rs investigated in previous works was limited, but we introduce

https://doi.org/10.1016/j.comnet.2018.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.01.019&domain=pdf
mailto:ayad.ibrahim@colorado.edu
mailto:youngbin.im@colorado.edu
mailto:eric.keller@colorado.edu
mailto:sangtae.ha@colorado.edu
https://doi.org/10.1016/j.comnet.2018.01.019

I. Ayad et al. / Computer Networks 133 (2018) 90–103 91

n

s

w

r

f

t

e

S

v

m

i

o

c

c

2

v

A

p

S

p

i

m

a

s

c

T

l

l

d

c

S

c

i

o

H

e

u

e

c

d

m

H

M

m

a

p

l

i

e

p

p

a

v

a

i

t

a

m

t

n

fi

v

o

c

t

i

c

p

b

c

a

t

p

t

v

i

S

D

m

s

D

(

c

h

3

d

ovel mechanisms to obtain detailed information from commercial

treaming players whose source codes are not public. In this paper,

e make the following contributions:

1. We provide the detailed operation of rate adaptation of sev-

eral existing DASH clients by code level analysis. MPEG does

not standardize the rate adaptation, so it is different on each

implementation.

2. We devise a method to obtain the detailed operation infor-

mation (e.g., bitrate, buffer amount) of popular commercial

streaming players whose source code are not publicly available.

We utilize a browser extension, WebDriver [7] , to programmat-

ically collect and control the behavior of the players.

3. On our HAS experiment testbed, we conduct extensive exper-

iments by varying different parameters and find several ob-

servations on the performance of 6 up-to-date representative

HAS/DASH clients: (i) there are significant differences among

the players in terms of bitrate adaptation, primarily due to the

differences in the video type of service (i.e., YouTube, Netflex,

or Vimeo), (ii) some clients repeatedly over-estimate the avail-

able bandwidth, (iii) the bitrate selection is unstable and unfair

when multiple clients compete, even with the clients of homo-

geneous algorithms, and (iv) the Quick UDP Internet Connec-

tions (QUIC) protocol used by YouTube player is insensitive to

the varying network bandwidth and arrivals of other TCP flows,

reducing its fairness with other players.

4. We identify one of the main causes of rate adaptation misbe-

haviors in the HAS players, which we call “buffer effect,” and

present a solution to mitigate this effect. The presented solu-

tion is generally applicable to history-based bandwidth estima-

tion algorithms.

5. Based on the observations from experiments, we suggest sev-

eral guidelines to help improve the performance (i.e., band-

width estimation and fairness) of rate adaptation algorithms on

different players.

The rest of the paper is organized as follows. We briefly discuss

elated works in Section 2 . Then we introduce our experimental

ramework and the detailed operation of HAS clients we used for

he experiments in Section 3 . We examine the operation of sev-

ral HAS clients in various network environments in Section 4 .

ection 5 evaluates the performance of HAS clients in more ad-

anced scenarios with varying bandwidth, background traffic, and

ultiple players. Section 6 provides the details of buffer effect we

dentified and presents its solution. Section 7 summarizes the key

bservations and suggests several solutions, while Section 8 dis-

usses the limitations of the paper and future work. Finally, we

onclude the paper in Section 9

. Related Work

Many HAS solutions have been proposed for seamless video ser-

ices in varying network conditions. Representative solutions are

dobe Systems HTTP Dynamic Streaming (Adobe HDS) [8] , Ap-

le HTTP Live Streaming (Apple HLS) [9] , and Microsoft Smooth

treaming (Microsoft SS) [10] . The MPEG standardizes these pro-

rietary solutions under the name of Dynamic Adaptive Stream-

ng over HTTP (DASH) [2] . In DASH standards, a video server keeps

ultiple versions of the same video, encoded at different bitrates

nd quality levels, and splits the video into a set of multiple small

egments. Before transmitting the video, the server provides DASH

lients with a Media Presentation Description (MPD) manifest file.

he MPD describes the video chunk information such as timing,

anguage, timed text, and media characteristics such as video reso-

ution and bitrate. Clients make the decision on which segment to

ownload and sequentially request video chunks based on network

onditions, device capabilities, and other factors [11] .
Many studies have been conducted with respect to HAS.

eufert et al. [12] surveys the technical development of HAS, in-

luding both open standardized and proprietary solutions, focus-

ng especially on users’ Quality of Experience (QoE). Among previ-

us works, several papers are related to experimental evaluation of

AS players. The vast majority of them focused on mainly propri-

tary adaptive streaming systems [4–6] . Akhshabi et al. [4] eval-

ated two commercial HAS players (Netflix and Microsoft Sliv-

rlight) and an open source player. They found significant ineffi-

iencies with regards to the adaptation to changing network con-

itions in all of the evaluated clients. Mueller et al. [5] experi-

entally evaluated several HAS systems such as Apple HLS, Adobe

DS, and Microsoft SS. They compared their implementation of

PEG-DASH with these proprietary solutions in vehicular environ-

ents. Akhshabi et al. [6] investigated the problem of contention

mong players and revealed that the typical behavior of a HAS

layer in the steady state, including ON-OFF periods, can be the

eading cause of the fairness problem in adaptive video stream-

ng. Zabrovskiy et al. [13] introduce an adaptive video streaming

valuation framework to enable the automated testing of video

layers with various conditions. The focus of the framework is to

rovide tools for easy and rapid experimentation of players and

lgorithms. Stohr et al. [14] also provide a public execution en-

ironment for DASH players to enable a systematic comparison

mong them. These two works, [13,14] , are similar to our approach

n that they provide a systematic evaluation framework for adap-

ive streaming players, but they do not provide a source code level

nalysis of popular DASH players and a support for popular com-

ercial streaming players.

Other major research focus for HAS has been on the adapta-

ion algorithms. Jiang et al. [15] developed bitrate adaptation tech-

iques that consider the tradeoffs among stability, fairness, and ef-

ciency. Li et al. [16] showed that the discrete characteristics of the

ideo bitrates make it hard for clients to perceive their fair shares

f bandwidth and proposed an adaptation algorithm similar to TCP

ongestion control. Huang et al. [17] proposed a buffer-based adap-

ation algorithm in which the capacity estimation is used only dur-

ng the startup phase. Yin et al. [18] proposed a model-predictive

ontrol algorithm that combines the throughput and buffer occu-

ancy information. Wisniewski et al. [19] proposed an approach

ased on the estimated probability of video rebuffering, which is

alculated by using an analytic model of playout buffer and char-

cteristics of segment download time. Spiteri et al. [20] formulated

he bitrate adaptation into a utility maximization problem and pro-

oses an online control algorithm which uses the Lyapunov op-

imization technique for minimizing rebuffering and maximizing

ideo quality.

There have been novel approaches on the adaptive stream-

ng, especially focusing on different network environments.

eema et al. [21] proposed the wireless sensor compatible

ASH (WVSNP-DASH) framework in which each video seg-

ent can be played without any reference to any file or

egment to support light-weight video streaming for sensors.

etti et al. [22,23] presents an Information Centric Networking

ICN) based P2P live streaming application in which neighboring

ellular devices can increase the quality of video playback with the

elp of other devices.

. Experimental Framework

In this section, we present our testbed and the implementation

etails of the HAS players that we used for the evaluation.

92 I. Ayad et al. / Computer Networks 133 (2018) 90–103

Fig. 1. Experimental framework. Dark gray components are added to the general

HAS systems.

S

m

o

t

l

w

m

i

b

t

e

a

i

A

l

t

v

a

i

t

m

i

a

f

W

c

w

u

v

i

a

p

G

s

H

a

c

a

h

a

e

a

Y
3.1. Metrics and Setup Description

In our experiment settings, we obtain the variations of bitrate,

the amount of buffers, and the throughput of each player. Addi-

tionally, we extract the delay of the video/player initialization pro-

cess. From the data obtained, we calculate the performance metrics

that significantly affect the QoE for HAS users.

• Average Bitrate: Since users normally prefer the video of higher

quality, this metric is an important factor that can measure the

satisfaction of users. However, notice that the utility to users

does not increase proportionally as the bitrate increases [24] .

• Number of bitrate changes: The frequency of bitrate changes

adversely affects the users’ satisfaction. Therefore, a video of

lower bitrates with fewer bitrate changes may provide higher

satisfaction to users than the video of higher bitrates with more

bitrate changes [25,26] .

• Rebuffering time: When the quantity of buffered video is not

sufficient, the players stop the playback and resume after a suf-

ficient amount of video is buffered. We estimate the total time

in which the buffer length is less than one second as the re-

buffering time. For players that we cannot directly obtain the

buffer information, we estimate the buffer length by consid-

ering the reception of the segments and playout time of each

segment. Let t be the current time, B (t) be the estimated buffer

length at time t . Also, let us assume that t i is the video playout

length of i th segment, s j is the j th rebuffering time, and r 0 is

the reception time of the first segment. We represent the num-

ber of segments received up to t as N (t) and the number of

rebufferings up to t as M (t). Then the estimated buffer length

B (t) can be represented by

B (t) =

N(t) ∑

i =1

t i −
(

t −
M(t) ∑

j=1

s j − r 0

)

.

• Startup delay: The startup delay of video significantly affects

the users’ abandonment rate when playing the video [27] .

Therefore, we obtain the startup delay by letting two users

manually measure it while playing the video.

3.2. Goals / Objectives

Our experiments aim at finding the key characteristics and

problems of HAS players in various network environments. We

tested the players in different scenarios to see how HAS players

adapt in (i) Standalone scenarios (Section 4), and (ii) Advanced sce-

narios (Section 5). We also provide a solution to an incorrect band-

width estimation issue causing misbehavior of the rate adaptation

by (iii) Enhancing the accuracy of DASH’s bandwidth estimation

(Section 6).

3.3. Experiment and Testbed Setup

Intensive work has been done in the HTTP adaptive stream-

ing arena, but a number of components require additional inves-

tigation. First, many of the previous HAS evaluation works, e.g.,

[4–6] , centered on the comparison of proprietary HTTP Adaptive

Streaming players. On the other hand, our evaluation covers sys-

tems developed under the MPEG DASH standard. We consider to-

day’s state-of-the-art DASH solutions such as DASH Industry Fo-

rum Reference Client [28] (we call it DASH-IF player in short),

Google’s MPEG-DASH Media Source demo [29] (we call it DASH-

Google player for short), and Bitmovin adaptive streaming demo

player for MPEG-DASH [30] (we call it Bitmovin player for short) 1 .
1 The Bitmovin player in [30] is a demo implementation, and it does not reflect

the adaptation logic of the actual commercial Bitmovin player.

1

c

2

e
econd, previous works such as [4–6] do not conduct the experi-

ents with enough repetition to identify tangible observations. In

ur work, we repeat each experimental setting with several runs

o find the general characteristics of player behaviors. Third, ear-

ier experimental works, e.g., [4–6] , did not test the HAS players

ith various factors that can affect the performance. Our experi-

ents consider not only various system parameters, but also real-

stic network environments, including background traffic, changing

andwidth, and coexistence of multiple HAS algorithms.

We designed our experiment framework as shown in Fig. 1 . The

estbed consists of a video server, an experiment controller, a WAN

mulator, and several HAS clients. The experiment controller initi-

tes an experiment by passing the experiment settings described

n an experiment scenario to the WAN emulator and HAS clients.

fter the experiment is completed, the experiment controller col-

ects the log files and stores them in the database, then displays

he graphs with the experiment results. The WAN emulator pro-

ides a realistic network environment by reflecting factors such

s the bandwidth, packet loss, and delay. It is implemented us-

ng netem [31] and Linux tc [32] . The video server resides on the

estbed for 3 DASH players, i.e., DASH-IF, DASH-Google, and Bit-

ovin. On the other hand, the video servers of commerical stream-

ng players we tested (i.e., Netflix [33] , YouTube [34] , Vimeo [35])

re located at the data center or CDN (content delivery network)

or the service providers.

Table 1 shows the content informaton used for our evaluations.

e used Big Buck Bunny video clip [36] for the source video in the

ase of 3 DASH players. The playout duration of the video source

as 9 minutes 56 seconds, and the resolution was 1920x1080. We

sed Bitmovin’s encoding service as guided in [37] to encode the

ideo for DASH-IF and Bitmovin players. We encoded the video us-

ng an H.264 video codec, and into 5 bitrates, 40 0, 80 0, 120 0, 240 0,

nd 4800 Kbps, with 4-seconds segment durations for these two

layers. To generate the video files and MPD suitable for DASH-

oogle player, we used a free media encoder ffmpeg [38] and DASH

egmenter (MP4Box-GPAC) [39] . The video was encoded using an

.264 video codec with 5 different bitrates, 522, 1200, 2100, 2500,

nd 4200 Kbps, and fragmented into chunks of 2 seconds. For the 3

ommercial streaming players, we arbitrarily selected videos with

 play duration longer than that of Big Buck Bunny video clip (1

our 34 minutes for Netflix, 10 minutes 34 seconds for YouTube,

nd 10 minutes 36 seconds for Vimeo). The video for Vimeo was

ncoded with 7 different bitrates, 301, 357, 713, 1043, 2650, 5590,

nd 15052 Kbps, with 6-seconds segment durations. The video of

ouTube was encoded with 8 different bitrates, 109, 245, 363, 709,

347, 2383, 5729, and 10649 Kbps, while that of Netflix was en-

oded with 9 different bitrates, 100, 290, 370, 560, 870, 1270, 1780,

610, and 3830 Kbps. For YouTube and Netflix, we couldn’t find the

xact segment duration since the video is encrypted. We ran the

I. Ayad et al. / Computer Networks 133 (2018) 90–103 93

Table 1

Content information used for our evaluations.

Media player Segment duration (secs) Play duration (mins:secs) Codec Source Video Bitrates (Kbps)

DASH-IF 4 9:56 H.264 Big Buck Bunny 40 0,80 0,120 0,240 0,480 0

DASH-Google 2 9:56 H.264 Big Buck Bunny 522,120 0,210 0,250 0,420 0

Bitmovin 4 9:56 H.264 Big Buck Bunny 40 0,80 0,120 0,240 0,480 0

Vimeo 6 10:36 H.264 Arbitrarily selected 301,357,713,1043,2650,5590,15052

Netflix Unknown 94:00 H.264/AVC and HEVC Arbitrarily selected 100,290,370,560,870,1270,1780, 2610,3830

YouTube Unknown 10:34 H.264/VP8 Arbitrarily selected 109,245,363,709,1347,2383, 5729,10649

e

t

s

o

o

a

V

f

o

m

t

t

p

g

u

o

s

3

p

o

o

a

g

r

w

m

t

b

R

i

3

a

2

t

p

t

s

h

t

p

t

o

r

t

c

a

a

Fig. 2. Netflix player with a plug-in to display the detailed video information is

shown.

t

c

R

i

M

I

e

r

t

a

m

T

o

s

t

t

m

b

r

s

3

l

b

p

g

t

t

i

o

o

g

f

t

xperiments for 10 minutes for all players so that the experiment

ime fits the minimum play duration of the selected videos.

In order to automate the experiment, we used WebDriver [7] to

ystematically interact with HAS clients. With WebDriver, we can

pen a HAS video web page, obtain the values of specific elements

n the page that contain information such as bitrate, buffer size,

nd click buttons to enable certain functions of the player. For

imeo player, since it does not provide elements to display the in-

ormation of bitrate or buffer length, we use speedprofile [40] . It

pens the player web page, plays the video, and returns the infor-

ation on the downloaded video segments such as URLs, size, and

iming, which are used to obtain the bitrate and buffer length.

To calculate the throughput variation, we utilize libnetfil-

er_queue [41] , a userspace library providing an API to access the

ackets queued by the kernel packet filter. We implement a pro-

ram using this API that accesses every packet for the HTTP stream

sed for the video streaming; gets the time, size information

f packets; and calculates the throughput variation of the video

tream.

.4. Tested HAS Players

In this section, we list the HAS players that we used for the ex-

eriments and explain how we obtained the information about the

perations for players which require special measurement meth-

ds. For players whose source code is available, we present rate

daptation algorithms through a code level analysis. For all al-

orithms, we use the following common notations. i is the cur-

ent segment number, and each algorithm decides the bitrate of

(i + 1) th video segment. N i represents the bitrate of i th segment,

hile I i represents the bitrate index of i th segment. bw i is the

easured bandwidth of i th transmitted video segment (by using

ransmission time and segment size). We assume that the num-

er of encoded bitrates is m , and the encoding rate of index k is

 k . The encoding rate of larger index is higher than that of smaller

ndex (for 1 ≤ j < k ≤ m, R j < R k).

.4.1. Open Source DASH Players

DASH-IF Player: Algorithm 1 is the pseudo-code for the bitrate

daptation algorithm of DASH Industry Forum Reference Client

.3.0 [28] . The algorithm determines the bitrates using a combina-

ion of multiple rules. The throughput rule averages the through-

uts of several downloaded segment samples and changes the bi-

rate to the maximum available if the buffer is sufficient. The in-

ufficient buffer rule changes to the lowest bitrate if re-buffering

appens and decreases the bitrate by increasing the differences if

he buffer length is between 4 and 8 seconds. The buffer occu-

ancy rule chooses the highest bitrate if the buffer length is larger

han 20 seconds. The abandon requests rule tracks the throughput

f each segment. If the estimated time for downloading the cur-

ent segment is significantly larger than the segment duration and

he remaining bytes are larger than the total estimated bytes of a

andidate rate for switching, the algorithm abandons the download

nd switches to the candidate rate. The candidate rate is decided

s the maximum bitrate that can be maintained, considering the
hroughput history. This method is to prevent buffer underflow in

ase of abrupt bandwidth drops. In addition, DASH Industry Forum

eference Client implements the adaptation algorithm presented

n [20] .

DASH-Google Player: The adaptation algorithm of Google’s

PEG-DASH Media Source demo [29] is shown in Algorithm 2 .

t maintains two bandwidth estimation variables. It uses different

xponential, moving average coefficients for these two variables to

eflect small scale and large scale bandwidth variations. It chooses

he minimum of the two when determining the bitrates.

Bitmovin Player: Algorithm 3 is the pseudo-code for the rate

daptation of Bitmovin player [30] . It consists of two switching

ethods: preferred startup switching and rate-based switching.

he preferred startup switching overrides the rate suggested by

ther switching methods with a maximum rate that is equal to or

maller than the preferred startup rate if two conditions are met:

he player is in the startup phase and the suggested rate is smaller

han the preferred rate. The rate-base switching method selects the

aximum rate that is smaller than the estimated bandwidth. The

andwidth is estimated by averaging the measured bandwidths of

ecently received segments with higher weights on more recent

egments.

.4.2. Commercial Streaming Players

Netflix Player: Netflix player [33] is one of the most popu-

ar video streaming players. Information such as bitrate selected,

uffer length, and throughput is not directly obtainable from the

layer’s user interface. Therefore, we use a Chrome extension pro-

ram called SuperNetflix [42] (shown in Fig. 2), which provides de-

ailed information about the video, playout status, and CDN where

he video is downloaded. When playing the video, the information

s not shown automatically. We use Selenium WebDriver [43] in

rder to find the web component that represents the button for

pening the information panel on the browser and to click it pro-

rammatically. We also use Selenium WebDriver to obtain the in-

ormation shown on the information panel, which is in the form of

ext, and parse it to obtain the performance metrics.

94 I. Ayad et al. / Computer Networks 133 (2018) 90–103

Algorithm 1: Bitrate adaptation algorithm of DASH Industry

Forum Reference Client.

n ← 3 // the number of bandwidth estimation samples (3

for VOD)

T low

← 4 // the threshold for deciding that the buffer

length is low

T rich ← 20 // the threshold for deciding that the buffer

length is sufficient

s ← 1 // the step down factor for decreasing the

bitrate when the buffer length is low

B total ← // the total bytes for segment i

B cur ← // the total received bytes up to now for

segment i

T elapsed ← // the elapsed time from the download of first

byte for segment i

T H arr ← // the throughput array used in abandon

requests rule (in bps)

l ← 5 // the minimum length to average the throughput

in Abandon requests rule

T grace ← 0 . 5 // the grace time threshold used in abandon

requests rule

C aba ← 1 . 8 // the constant for the decision of

abandoning the segment in abandon requests rule

D ← // the segment duration

Throughput rule:

sum ← 0

for j ← 0 to n − 1 do

sum ← sum + bw i − j

Band wid th ← sum/n // Estimated bandwidth

if Bu f f er _ len > = T low

· 2 then

for k ← m to 1 do

if Band wid th > = R k then

N i +1 ← R k
break

Insufficient buffer rule:

if rebu f f ering then

N i +1 ← R 1

else if T low

< Bu f f er _ len < T low

· 2 then

N i +1 ← R I i −s

s ← s + 1

Buffer occupancy rule:

if Bu f f er _ len > T rich then

N i +1 ← R m

Abandon requests rule (called multiple times for a segment):

add B cur /T elapsed to T H arr

if length (T H arr) > l and T elapsed > T grace and B cur < B total then

T H a v g ← average of T H arr

T DownEst ← B total ∗ 8 /T H a v g // estimated download time

if T DownEst < D ∗ C aba then

return

else
R new

← the maximum bitrate that can be covered by

T H a v g
B est ← B total ∗ R new

/N i

B remain ← B total − B cur

if B remain > B est then

abandon and switch to quality R new

Algorithm 2: Bitrate adaptation algorithm of Google’s MPEG-

DASH Media Source demo.

E slow

← // the bandwidth estimation for slow channel

variation

E fast ← // the bandwidth estimation for fast channel

variation

αslow

← 0 . 99 // the exponential moving average

coefficient for E slow

α fast ← 0 . 98 // the exponential moving average

coefficient for E fast

Bandwidth estimation update:

while video data is downloaded do

E slow

← αslow

· E slow

+ (1 − αslow

) · d ownload _ throughput

E fast ← α fast · E fast + (1 − α fast) · d ownload _ throughput

Bitrate decision:

Band wid th ← min (E slow

, E fast) // Estimated bandwidth

for k ← m to 1 do

if Band wid th > = R k then

N i +1 ← R k
break

Fig. 3. YouTube player with an option to display the detailed video information

enabled is shown.

d

(

f

p

N

o

v

t

a

r

w

F

S

4

s

n

YouTube Player: The YouTube player [34] provides a function to

isplay detailed video playback information called ‘Stats for nerds’

shown in Fig. 3). By default, this function is not enabled. There-

ore, we use Selenium WebDriver to find the button on the web

age to enable it and click it programmatically as is done for the

etflix player. We also parse the text in the information panel to

btain the performance metrics.

Vimeo Player: We found that Vimeo player [35] uses different

alues in the specific part of the URL for different bitrates. Before

he experiments, we play the video with different fixed bitrates

nd obtain the mapping between the values of URL parts rep-

esenting bitrate and corresponding bitrates. During experiments,

e use this mapping to figure out the actual selected bitrates.

or buffer length estimation, we use the method explained in

ection 3.1 .

. Standalone Scenarios

In this section, we evaluate the performance of HAS players de-

cribed in Section 3.4 by running each video player in different

etwork settings.

I. Ayad et al. / Computer Networks 133 (2018) 90–103 95

 0

 1000

 2000

 3000

 4000

 5000

1024 2048 3072 Unlimited

A
ve

ra
ge

 B
itr

at
e(

K
bp

s)

Bandwidth (Kpbs)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(a) Average bitrate versus bandwidth.

 0

 1000

 2000

 3000

 4000

 5000

0 50 100 300

A
ve

ra
ge

 B
itr

at
e(

K
bp

s)

Delay (msec)

DASH−IF
DASH−GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(b) Average bitrate versus delay.

 0

 1000

 2000

 3000

 4000

 5000

0 2 4 6 8

A
ve

ra
ge

 B
itr

at
e(

K
bp

s)

Packet Loss (%)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(c) Average bitrate versus packet loss.

Fig. 4. The average bitrates for 6 players are compared in different bandwidth, delay, and packet loss conditions. The default bandwidth, delay, packet loss rate are 3 Mbps,

0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

Algorithm 3: Bitrate adaptation algorithm of Bitmovin player.

Preferred startup switching:

t ← // the time passed from start

s ← // the index of the rate suggested by other

switching methods

R pre ← // the preferred startup rate

if t < 10 then

for k ← m to 1 do

if k = s then

return N i +1 ← R s

if R k < = R pre then

return N i +1 ← R k

return N i +1 ← R m

else
return N i +1 ← R s

Rate based switching:

// Bandwidth estimation update

depth ← // the number of downloaded segments to use

for bandwidth estimation

N bu f ← // the buffer size in segment numbers

sum ← 0

for j ← 0 to depth − 1 do

sum ← sum + bw i − j · (1 − j/N bu f)

Band wid th ← sum/depth // Estimated bandwidth

// Bitrate decision

R min ← In f inity

R max ← 0

for all encoding rate index k do

if R max < R k and R k < Band wid th then

R max ← R k

if R min > R k then

R min ← R k

if R max > 0 then

N i +1 ← R max

else
N i +1 ← R min

4

m

c

t

K

3

e

4

t

d

i

s

B

e

a

s

v

i

w

r

W

n

i

e

n

o

a

f

g

t

t

p

a

t

w

o

t

i

i

c

a

t

t

t

a
.1. Experimental Settings

We run one player of each algorithm and change the experi-

ental settings as follows for the evaluation in various network
ircumstances. We vary the network bandwidth from unlimited

o limited bandwidth with various values (1024, 2048, and 3072

bps). We also vary the network round trip time (0, 50, 100, and

00 msec) and packet loss rate (0, 2, 4, 6, and 8 %). We repeat

very experiment 5 times and average the performance metrics.

.2. Results

Impact of bandwidth, delay, and packet loss on average bi-

rate: The average bitrates of the six players are compared at

ifferent bandwidths in Fig. 4 a. As expected, the average bitrate

ncreases as the network bandwidth increases. However, we ob-

erved some players closely follow the assigned bandwidth, e.g.,

itmovin, but some players conservatively adapt to the bandwidth,

.g., Vimeo. By looking into the internal variables of the players, we

lso find that the bandwidth estimation variables and the bitrates

elected by DASH-IF and DASH-Google clients sometimes become

ery large. We presume that this over-estimation of the bandwidth

s due to the buffer effect. Since the player estimates the band-

idth by looking at the retrieval speed of video data, if the data

etrieval occurs in a batch, the client overestimates the bandwidth.

e discuss this issue in Section 6 in more detail.

The average bitrates of the six clients are compared at different

etwork delays and packet losses in Fig. 4 b and 4 c. As the delay

ncreases, the average bitrate deceases in most players, except sev-

ral exceptional cases in Netflix and Vimeo players. YouTube does

ot adapt to different RTTs. We presume that the insensitiveness

f the YouTube player to the variation of RTT is due to the char-

cteristics of the transport protocol used by the Chrome browser

or YouTube service, i.e., QUIC, different from the normal TCP al-

orithm. QUIC [44,45] is a transport protocol designed by Google

o improve performance of HTTPS. It replaces most of the tradi-

ional HTTPS protocol stack and is developed as a user-space trans-

ort based on UDP. Even though QUIC has its own rate control

lgorithm, it is presumed that the algorithm is not so sensitive

o the network variation and other competing flows in the net-

ork. We conducted various experiments that show the behavior

f QUIC in more detail in Section 5 . The relation of the average bi-

rate and packet loss rate is as expected: as the packet loss rate

ncreases, the average bitrate decreases. Again, the YouTube player

s not adaptive to the loss rate, unlike other players.

Impact of bandwidth, delay, packet loss on number of bitrate

hanges: We look into how the bandwidth, delay, and packet loss

ffect the number of bitrate changes in Fig. 5 a, 5 b, and 5 c, respec-

ively. In DASH-IF, Bitmovin, and Netflix players, the number of bi-

rate changes decreases as the bandwidth increases. We presume

hat this is because there are more available video bitrate options

t lower bandwidth. We can also observe that the number of bi-

96 I. Ayad et al. / Computer Networks 133 (2018) 90–103

 0

 20

 40

 60

 80

 100

1024 2048 3072 Unlimited

N
um

be
r o

f b
itr

at
e

ch
an

ge
s

Bandwidth (Kpbs)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(a) The number of bitrate changes ver-
sus bandwidth.

 0

 20

 40

 60

 80

 100

0 50 100 300

N
um

be
r o

f b
itr

at
e

ch
an

ge
s

Delay (msec)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(b) The number of bitrate changes ver-
sus delay.

 0

 20

 40

 60

 80

 100

0 2 4 6 8

N
um

be
r o

f b
itr

at
e

ch
an

ge
s

Packet Loss (%)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(c) The number of bitrate changes ver-
sus packet loss.

Fig. 5. The number of bitrate changes for 6 players is compared at different bandwidth, network delay, and packet loss conditions. The default bandwidth, delay, packet loss

rate are 3 Mbps, 0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

 0

 5

 10

 15

 20

 25

 30

 35

 40

1024 2048 3072 Unlimited

R
eb

uf
fe

rin
g

Ti
m

e
(S

ec
on

ds
)

Bandwidth (Kbps)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(a) The rebuffering times versus band-
width.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 50 100 300

R
eb

uf
fe

rin
g

Ti
m

e
(S

ec
on

ds
)

Delay (msec)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(b) The rebuffering times versus delay.

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 2 4 6 8

R
eb

uf
fe

rin
g

Ti
m

e
(S

ec
on

ds
)

Packet Loss (%)

DASH-IF
DASH-GOOGLE

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

(c) The rebuffering times versus packet
loss.

Fig. 6. The rebuffering times for 6 players are compared at different bandwidth, delay, and packet loss conditions. The default bandwidth, delay, packet loss rate are 3 Mbps,

0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120R
eb

uf
fe

rin
g

tim
e

(S
ec

on
ds

)

Number of bitrate changes

DASH-IF
DASH-Google

BITMOVIN
NETFLIX

YOUTUBE
VIMEO

Fig. 7. The relation between the number of bitrate changes and the rebuffering

time is shown.

Table 2

Startup delay measured by two users

(unit: seconds). We set the band-

width, network delay, loss rate to 3

Mbps, 0 msec, 0%.

User 1 User 2

DASH-IF 2.18 2.24

DASH-Google 4.95 4.80

Bitmovin 3.38 3.46

Netflix 7.76 7.68

YouTube 1.75 1.76

Vimeo 1.54 1.47

t
trate changes of Bitmovin is exceptionally higher than other play-

ers. We presume the algorithms of the Bitmovin player that use

a simplified bandwidth estimation approach without considering

the buffer status are related to this unstable behavior. For DASH-

Google, YouTube, and Vimeo, the number of bitrate changes are

marginal regardless of the bandwidth. We cannot observe a defi-

nite relation between the number of bitrate changes and the de-

lay. The relation of the number of bitrate changes and the packet

loss is clear in DASH-IF, DASH-Google, and Netflix players. How-

ever, other players, including Bitmovin, YouTube, and Vimeo play-

ers, are rather insensitive to the packet loss rate.

Impact of bandwidth, delay, and packet loss on rebuffering

time: The relations between the rebuffering time and the band-

width, delay, and packet loss are shown in Fig. 6 a, 6 b, and 6 c,

respectively. Roughly, the rebuffering time increases as the band-

width decreases and as the network delay increases for DASH-IF

and Bitmovin players, but there are lots of exceptions. Other play-

ers do not exhibit rebuffering except the case of 1024 Kbps band-

width with the Netflix player. From Fig. 6 c showing that most of

players exhibit no rebuffering time in different packet loss rates,

we can presume that any algorithm caring for the buffer status

has minimized the rebuffering time and that the HAS reaction is

effective in reducing the rebuffering time in different channel con-

ditions.

Number of bitrate changes versus rebuffering time: The rela-

tionship between the number of bitrate changes and the rebuffer-

ing time is shown in Fig. 7 . We cannot observe a definite relation

between them for all players, but we can see that DASH-IF and

Bitmovin players take a large range in both metrics compared to

other players.
n
Startup delay: Table 2 shows the startup delay measured by

wo users for different HAS players with 3072 Kbps bandwidth and

o RTT/packet loss setting. We repeat the measurement 20 times

I. Ayad et al. / Computer Networks 133 (2018) 90–103 97

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0 100 200 300 400 500 600

B
an

dw
id

th
 (K

bp
s)

Time (Seconds)

Fig. 8. The variation of bandwidth set for the dynamic bandwidth scenario is

shown.

f

v

s

l

s

g

t

t

t

o

p

5

d

n

5

a

t

b

i

i

g

e

m

a

s

t

c

n

r

a

5

D

f

t

e

o

v

s

b

4

w

b

m

a

t

a

l

(

d

e

s

i

t

b

l

s

m

a

fl

o

t

b

b

b

i

5

S

p

(

p

t

t

b

B

i

b

(

l

r

a

a

t

s

a

t

5

6

D

i

a

S

a

c

V

e

b

p

Y
or each player and average the results. We can observe that the

alues are highly correlated between users, and different players

how significantly different values: while Vimeo has a startup de-

ay around 1.5 seconds, that of Netflix is over 7.5 seconds. We pre-

ume this variation is due to the difference in the main service tar-

ets of players. The Netflix player maintains long-term stability of

he video playout by having enough buffered video before it starts

o play because it mostly services videos with long play time. On

he other hand, Vimeo player puts higher weight on quick start

f play since it mostly services videos with short play time. Other

layers come between these two extremes.

. Advanced Scenarios

In this section, we test three advanced experiment scenarios:

ynamic bandwidth, background traffic, and multiple players sce-

arios.

.1. Experimental Settings

For the dynamic bandwidth scenario, we set the bandwidth

s shown in Fig. 8 . We change the bandwidth every 90 seconds

o see how HAS players adapt to a bandwidth variation. For the

ackground traffic scenario, we set the background TCP traffic us-

ng the iperf traffic generator as shown in Fig. 10 . This setting

s to test how HAS players operate when the number of back-

round TCP flows is varied between 1, 2, and 3. In multiple play-

rs scenario, we observe how players operate in a scenario where

ultiple adaptive streaming players share a network bottleneck

nd compete for available bandwidth, as in [6] with up-to-date

tandard-based players and commercial streaming players. We test

wo types of scenarios: the homogeneous scenario in which every

lient node runs the same HAS players and the heterogeneous sce-

ario in which every client node runs different HAS players. We

un the experiments for each scenario five times and present the

verage values for the performance metrics.

.2. Impact of Dynamic Bandwidth

The result of dynamic bandwidth scenario is shown in Fig. 9 .

ASH-IF client switches between high bitrates and low bitrates

requently, but it follows the bandwidth variation roughly in bi-

rate selection (Fig. 9 a). It maintained a stable buffer length in this

xperiment but exhibited rebuffering times of 31.0 and 35.8 sec-

nds in 2 of the 5 experiment runs. DASH-Google client (Fig. 9 b)

ery closely estimates the network bandwidth to the bandwidth

et for the experiment. However, it sometimes overestimates the

andwidth due to the buffer effect, e.g., during the period between
60 and 480 seconds, and alternates between different bitrates

ithin a short period of time. Despite the overestimation of the

andwidth, DASH-Google player did not trigger a rebuffering. Bit-

ovin player (Fig. 9 c) follows the bandwidth variation most closely

mong all players, but it changes the bitrate very frequently due to

he buffer effect in bandwidth estimation. Bitmovin player shows

 rebuffering time of 10.7 seconds and exhibits a rebuffering time

arger than zero in all the other 4 experiment runs. Netflix player

 Fig. 9 d) is somewhat insensitive to the bandwidth variation. It

oes not change the bitrate according to the bandwidth change,

xcept during the initial phase. We cannot know the detailed rea-

on for this since the source code of the adaptation algorithm

s not accessible, but we presume that Netflix player prioritizes

he stability of the bitrate selection over the adaptability to the

andwidth variation. Netflix player also maintains a much higher

evel of buffer length than other players, excluding YouTube, which

hows a similar level of buffer length. YouTube player (Fig. 9 e) is

ore insensitive to the bandwidth variation than Netflix player. In

ddition to the prioritization on stability in bitrate selection of Net-

ix player, we found that YouTube player considers the resolution

f the screen and does not select bitrates higher than the bitrate

hat the screen can display. Vimeo player (Fig. 9 f) adapts to the

andwidth variation very stably. However, this player chooses the

itrate in an excessively conservative way: it chooses a much lower

itrate than the available bandwidth. As a result, the buffer length

s stable throughout the duration of the experiment.

.3. Impact of Background Traffic

The result of background traffic scenario is illustrated in Fig. 11 .

imilar to the result of dynamic bandwidth scenario, DASH-IF

layer switches between high bitrates and low bitrates frequently

 Fig. 11 a). It shows a rebuffering time of 19.0 seconds during the

eriod from 535 to 570 seconds due to an excessively large bi-

rate selection. DASH-Google client (Fig. 11 b) actively selects a bi-

rate to adapt to the varying throughput due to the different num-

er of flows as times goes. It triggers rebuffering for 2.1 seconds.

itmovin player (Fig. 11 c) changes the bitrate most frequently, as

n dynamic bandwidth scenario. In addition, its buffer is not sta-

le and exhibits a rebuffering time of 19.4 seconds. Netflix player

 Fig. 11 d) maintains a relatively large bitrate and stable buffer

ength. However, it takes a long time (around 100 seconds) to

each a stable state in the initial phase. YouTube player (Fig. 11 e),

gain, exhibits invariant bitrate selection and stable buffer length

s in dynamic bandwidth scenario. Vimeo player (Fig. 11 f) adapts

o the bandwidth variation very stably as in dynamic bandwidth

cenario. However, it also chooses the bitrate very conservatively

nd, as a result, maintains stable buffer load throughout the dura-

ion of the experiment.

.4. Impact of Multiple Players

The results of the multiple homogeneous players scenarios for

 tested players are shown in Table 3 . The average bitrates of

ASH-Google and YouTube are the largest, while that of Vimeo

s the smallest. We presume the different sets of bitrates avail-

ble for each player affected this result. However, as pointed out in

ection 4 , the QUIC protocol used by YouTube and the adaptation

lgorithm of DASH-Google, which follows the available bandwidth

losely, are expected to have affected the high average bitrate. The

imeo player’s conservative bitrate selection is confirmed in this

xperiment again. Overall, the number of bitrate changes and re-

uffering times are larger than previous experiments. Even the

layers that showed the most stable behaviors, such as Netflix,

ouTube, and Vimeo players, change bitrate much more than in

98 I. Ayad et al. / Computer Networks 133 (2018) 90–103

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

averageThroughput
Throughput

Bitrate
Buffer length

(a) DASH-IF player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

globalFastBandwidth
globalSlowBandwidth

Throughput
Bitrate

Buffer length

(b) DASH-Google player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(c) Bitmovin player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 50

 100

 150

 200

 250

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(d) Netflix player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 50

 100

 150

 200

 250
K

bp
s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(e) YouTube player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(f) Vimeo player.

Fig. 9. Results of dynamic bandwidth scenario. We illustrate the variations of throughput, bitrate, buffer length, and other internal variables according to the player. We vary

only the bandwidth according to Fig. 8 , and fix the network delay and packet loss rate to 0 msec, 0%, respectively.

 0 100 200 300 400 500 600
Time (Seconds)

Flow 1 Flow 2 Flow 3

Fig. 10. The initiation and termination times of 3 background traffic for the back-

ground traffic scenario is shown.

b

e

h

Y

p

F

w

g

l

i

6

w

e

s

T

t

a

e

t

p

e

D

b

s

w

s

3

l
previous experiments and sometimes trigger rebuffering. We pre-

sume that the distinct traffic characteristics of HAS players, such as

repeated ON-OFF periods, make the available bandwidth for each

player variable and difficult to determine a stable bitrate in com-

parison to previous scenarios (which include only one HAS player

for each experiment).

Finally, the results of the multiple heterogeneous players sce-

narios with three DASH standard-based clients of DASH-IF, DASH-

Google, Bitmovin, and three commercial streaming players of Net-

flix, YouTube, and Vimeo are also shown in Table 3 . We can see

that the different adaptation algorithms of different players result

in significant differences in each performance metric. DASH-Google

player chooses the lowest bitrate but experiences low number of
itrate changes and no rebuffering. Bitmovin player takes the high-

st bitrate among three contending players, but it experiences the

ighest number of bitrate changes and also long rebuffering times.

ouTube player selects the highest bitrate among three contending

layers, but it does not experience bitrate change or rebuffering.

rom this, we can observe that QUIC protocol is very aggressive

hen contending with other TCP flows and not responsive to con-

estion as much as other TCP flows. Vimeo player experiences a

ong rebuffering time and large number of bitrate changes despite

ts low bitrate selection.

. Enhancing the Accuracy of DASH’s Bandwidth Estimation

As we discovered from the experiments in Section 4 , the band-

idth estimation algorithms of the HAS clients sometimes over-

stimate the available bandwidth. This overestimation, in turn, re-

ults in the selection of much higher bitrate than the bandwidth.

o solve this vicious cycle in an efficient way, we devised a sta-

istical method that eliminates the throughput information that is

ffected by the buffer effect as in Algorithm 4 . By not consid-

ring the outliers from the throughput data in the calculation of

he bandwidth available, the method predicts the bandwidth more

recisely.

To check whether the proposed algorithm mitigates the buffer

ffect, we test the original DASH-Google client and a modified

ASH-Google client containing our algorithm with the 1024 Kbps

andwidth limitation. The results are shown in Figs. 12 and 13 . As

hown in Fig. 12 , the bandwidth estimation values (globalFastBand-

idth and globalSlowBandwidth) of original DASH-Google player

ometimes become significantly large due to buffer effect, e.g., at

73, 457, and 587 seconds. The throughput sample values are so

arge that even if a moving average is used for the calculation

I. Ayad et al. / Computer Networks 133 (2018) 90–103 99

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

 30

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

averageThroughput
Throughput

Bitrate
Buffer length

(a) DASH-IF player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

 30

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

globalFastBandwidth
globalSlowBandwidth

Throughput
Bitrate

Buffer length

(b) DASH-Google player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

 30

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(c) Bitmovin player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 50

 100

 150

 200

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(d) Netflix player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 50

 100

 150

 200
K

bp
s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(e) YouTube player.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

 30

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

Throughput
Bitrate

Buffer length

(f) Vimeo player.

Fig. 11. Results of the background traffic scenario. We illustrate the variations of throughput, bitrate, buffer length, and other internal variables according to the player. We

set the bandwidth, network delay and packet loss rate to 3 Mbps, 0 msec, 0%, respectively.

Algorithm 4: Bandwidth estimation method for eliminating

the buffer effect.

S i ← the moving average for the deviation of the throughput

from the bandwidth estimation in i th iteration

B i ← the bandwidth estimation of i th iteration

α ← the exponential moving average coefficient for

bandwidth estimation

β ← the exponential moving average coefficient for

throughput deviation S i
k ← the parameter for giving tolerance to the variation of the

bandwidth

bw i ← the bandwidth sample in iteration i

n ← the number of bandwidth samples that exceed the

variation range consecutively

γ ← the number of bandwidth samples that we consider as

actual bandwidth increase if they exceeds the variation range

consecutively

for each iteration i do

if bw i ≥ B i −1 + k · S i −1 then

n = n + 1

else
n = 0

if bw i < B i −1 + k · S i −1 or n ≥ γ then

B i = α · B i −1 + (1 − α) · bw i

S i = β · S i −1 + (1 − β) | B i − bw i |
else

B i = B i −1

S i = S i −1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600
 0

 2

 4

 6

 8

 10

 12

 14

 16

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

globalFastBandwidth
globalSlowBandwidth

Throughput
Bitrate

Buffer length

Fig. 12. The variations of throughput, bandwidth estimation variables, buffer

amount, and bitrate for original DASH-Google player with 1024 Kbps bandwidth

limitation are shown. The network delay, packet loss rate are set to 0 msec, 0%.

o

s

l

w

i

w

p

T

f

i

t
f bandwidth estimation variables, the bandwidth estimation is

everely distorted. Due to this phenomenon, the bitrates are se-

ected incorrectly; much higher bitrates than the available band-

idth are selected, and the bitrates vary wildly. On the other hand,

n the case of modified DASH-Google (Fig. 13), the estimated band-

idth values are not affected by instant increases of the through-

ut sample value and stably approach the assigned bandwidth.

his results in the stable bitrate selection. To further inspect the ef-

ect of Algorithm 4 , we repeated the dynamic bandwidth scenario

n Section 5.2 with the modified DASH-Google client. We observed

hat the modified DASH-Google client selects the bitrates closely to

100 I. Ayad et al. / Computer Networks 133 (2018) 90–103

Table 3

Results of multiple player scenarios. The bandwidth is set to 4 Mbps, and network delay and packet loss rate are set to 0 msec and 0% respectively.

Scenario Type Client Number Average bitrate (Kbps) Number of bitrate changes Average buffer length Rebuffering time (Seconds)

Homogeneous 1 (DASH-IF) 756.81 43.2 8.46 18.09

2 (DASH-IF) 767.05 45.0 8.58 10.99

3 (DASH-IF) 772.95 41.0 8.38 19.88

4 (DASH-IF) 764.96 45.6 8.77 8.64

Total average 765.44 43.7 8.55 14.40

Homogeneous 1 (DASH-Google) 1059.57 31.6 13.22 0

2 (DASH-Google) 1230.61 28.6 13.79 0

3 (DASH-Google) 1262.36 22.4 13.91 0

4 (DASH-Google) 1101.27 29.8 13.48 0

Total average 1163.45 28.1 13.60 0

Homogeneous 1 (Bitmovin) 880.50 93.2 6.26 60.00

2 (Bitmovin) 835.97 93.4 7.60 45.68

3 (Bitmovin) 895.43 91.0 5.78 98.02

4 (Bitmovin) 913.78 96.2 6.94 29.14

Total average 881.42 93.4 6.65 58.21

Homogeneous 1 (Netflix) 665.80 26.8 113.14 0

2 (Netflix) 676.64 19.6 135.83 0

3 (Netflix) 710.42 20.4 128.39 0.60

4 (Netflix) 716.20 15.0 146.26 0

Total average 692.27 20.4 130.90 0.15

Homogeneous 1 (YouTube) 1004.50 6.0 93.91 37.16

2 (YouTube) 1055.88 5.6 95.25 20.17

3 (YouTube) 1275.00 0.8 128.12 0

4 (YouTube) 1154.57 4.8 100.91 22.63

Total average 1122.49 4.3 104.55 19.99

Homogeneous 1 (Vimeo) 496.20 21.0 17.83 12.54

2 (Vimeo) 460.29 15.4 18.60 0

3 (Vimeo) 441.81 22.4 18.07 0

4 (Vimeo) 364.83 15.8 13.26 16.80

Total average 440.79 18.6 16.94 7.33

Heterogeneous 1 (DASH-IF) 1168.08 12.8 9.43 4.89

2 (DASH-Google) 864.61 20.4 13.93 0

3 (Bitmovin) 1521.99 87.0 9.93 4.34

Total average 1184.90 40.0 11.09 3.07

Heterogeneous 1 (Netflix) 1206.00 16.2 124.76 0

2 (YouTube) 1347.00 0 148.72 0

3 (Vimeo) 543.04 26.4 15.83 27.71

Total average 1032.01 14.2 96.44 9.23

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600
 0

 2

 4

 6

 8

 10

 12

 14

 16

K
bp

s

B
uf

fe
r l

en
gt

h
(S

ec
on

ds
)

Time (Seconds)

globalFastBandwidth
globalSlowBandwidth

Throughput
Bitrate

Buffer length

Fig. 13. The variations of throughput, bandwidth estimation variables, buffer

amount, and bitrate for modified DASH-Google player with 1024 Kbps bandwidth

limitation are shown. The network delay, packet loss rate are set to 0 msec, 0%.

the bandwidth variation without over-estimation of the bandwidth

during the time period between around 460 and 475 seconds (re-

sults are not shown to save the space).

7. Key Observations and Suggestions

• Customization of rate adaptation according to the service

target: Through various experiments shown in previous sec-

tions, we observed there are significant differences among play-

ers in terms of bitrate adaptation. They differ in target buffer
length, adaptability to the bandwidth variations, fairness among

flows, startup delay, etc. One of the factors that affects these

differences is the major target of the service. The commercial

streaming players tend to change the bitrate more conserva-

tively than general DASH standard-based players. The players

that service mostly short videos, such as Vimeo, tend to main-

tain shorter buffer length than the players that service mostly

long videos, such as Netflix. We will be able to obtain higher

user satisfaction if we customize the bitrate adaptation accord-

ing to the users’ preferences or video type/length.

• Bandwidth estimation: In Section 4 , we observe that the band-

width estimation is highly inaccurate in some scenarios due

to the buffer effect. We may utilize a cross-layer approach

in which the HAS player can access the transport layer for

throughput information to obtain better bandwidth estimation

(e.g., using TCP_INFO socket information, which allows applica-

tions to access TCP connection information such as transmit-

ted bytes, received bytes, TCP state, and congestion window).

We can also use a statistical method in which the through-

put values affected by the buffer effect are eliminated from

the calculation of the bandwidth estimation, as we suggested

in Section 6 .

• Fairness: The TCP mechanism provides the throughput fairness

among competing flows. However, the bitrate selections are un-

fair in many competition scenarios even with the homogeneous

algorithms, due to the native characteristics of HAS (such as

the ON-OFF periods pointed out in [6]). The UDP-based trans-

port of YouTube player has a negative impact on fairness. Dur-

ing the competition with Netflix and Vimeo players, YouTube

I. Ayad et al. / Computer Networks 133 (2018) 90–103 101

8

i

n

g

n

w

m

d

t

v

s

t

w

s

s

9

c

a

v

e

c

m

t

e

t

p

p

l

o

c

e

B

p

H

A

S

f

f

R

[

[

[

[

[

[

[
[

[

[

[

player obtains the highest constant bitrate, and the other play-

ers suffer from low, variable bitrates, or rebuffering (especially

the Vimeo player). To solve this problem, we suggest deriv-

ing a basic, minimal mechanism for maintaining the fairness

among different players and applying it to every player (e.g.,

the maximum bandwidth increase rate in one step, minimum

time for a bitrate change—abrupt increase in rate or frequent

bitrate change makes other players hard to estimate the band-

width available).

. Limitations and Future Work

In our experiments, we vary the network environment in var-

ous ways but confine our experiment environment to the wired

etwork rather than the mobile network. Our focus is on investi-

ating how players behave in different settings within the wired

etwork. Experiments with other HAS players in mobile networks

ere performed in [46–49] , and [50] . We leave the experiment in

obile network with our tested players to our future work. In ad-

ition to the mobile network environment, there are various fac-

ors that can affect the operation of HAS players, including the

ideo content, video encoding method such as bitrate set, codec,

egment duration, variable bit rate/constant bit rate, and video rate

ime-variability. Some of these issues were addressed in previous

ork [48,51,52] , but we leave thorough investigation of these is-

ues with up-to-date DASH based players and popular streaming

ervice players as our future work.

. Conclusion

In this paper, we perform an in-depth evaluation of practi-

al streaming players developed under the MPEG DASH standard

nd popular commercial streaming players. Specifically, we pro-

ide the detailed operation of rate adaptation algorithms in sev-

ral HAS/DASH clients, using code level analysis. In addition, we

onduct extensive experiments of these clients on our testbed and

ake several observations on the performances of 6 representa-

ive DASH-based players and popular commercial streaming play-

rs. They include significantly different behaviors in bitrate adap-

ation due to differences in the type of services (e.g., commercial

layers tend to change the bitrate more conservatively, and the

layers serving mostly short videos tend to maintain a small buffer

ength) and the non-optimal bit-rate selection due to frequent

ver-estimation of the bandwidth. In particular, we identified the

ause of one of the player mis-behaviors, which we termed “buffer

ffect,” and provided a statistical method to mitigate the effect.

ased on the observations, we suggested several guidelines for im-

roving the rate adaptation, bandwidth estimation, and fairness of

AS/DASH players.

cknowledgments

This work was partially supported by NSF grant CNS-1525435.

pecial thanks go to Shyam Sundar Ramamoorthy and Brett Shouse

or their help in the implementation of the testbed and many help-

ul discussions and comments on the paper.

eferences

[1] Cisco , Cisco visual networking index: Forecast and methodology, 2014–2019,
CISCO White paper (2015) .

[2] MPEG DASH standard., http://dashif.org/mpeg-dash .

[3] I. Sodagar , The mpeg-dash standard for multimedia streaming over the inter-
net, IEEE MultiMedia (4) (2011) 62–67 .

[4] S. Akhshabi , A.C. Begen , C. Dovrolis , An experimental evaluation of rate-adap-
tation algorithms in adaptive streaming over http, in: Proceedings of the sec-

ond annual ACM conference on Multimedia systems, ACM, 2011, pp. 157–168 .
[5] C. Müller , S. Lederer , C. Timmerer , An evaluation of dynamic adaptive stream-
ing over http in vehicular environments, in: Proceedings of the 4th Workshop

on Mobile Video, ACM, 2012, pp. 37–42 .
[6] S. Akhshabi , L. Anantakrishnan , A.C. Begen , C. Dovrolis , What happens when

http adaptive streaming players compete for bandwidth? in: Proceedings of
the 22nd international workshop on Network and Operating System Support

for Digital Audio and Video, ACM, 2012, pp. 9–14 .
[7] WebDriver., https://www.w3.org/TR/webdriver/ .

[8] Adobe HTTP Dynamic Streaming., http://www.adobe.com/products/

hds- dynamic- streaming.html .
[9] Apple HTTP Live Streaming., https://developer.apple.com/streaming .

[10] Microsoft Smooth Streaming., http://www.iis.net/downloads/microsoft/
smooth-streaming .

[11] Wowza, Understanding streaming protocols and output file formats, 2014
(accessed August 11, 2014), (http://www.wowza.com/forums/content.php?

621- Understanding- streaming- protocols- andoutput- file- formats).

[12] M. Seufert , S. Egger , M. Slanina , T. Zinner , T. Hobfeld , P. Tran-Gia , A survey on
quality of experience of http adaptive streaming, IEEE Communications Sur-

veys & Tutorials 17 (1) (2015) 469–492 .
[13] A. Zabrovskiy , E. Kuzmin , E. Petrov , C. Timmerer , C. Mueller , Advise: Adap-

tive video streaming evaluation framework for the automated testing of media
players, in: Proceedings of the 8th ACM on Multimedia Systems Conference,

ACM, 2017, pp. 217–220 .

[14] D. Stohr, A. Frömmgen, A. Rizk, Where are the sweet spots? a systematic ap-
proach to reproducible dash player comparisons (2017).

[15] J. Jiang , V. Sekar , H. Zhang , Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive, in: ACM CoNEXT, 2012 .

[16] Z. Li , X. Zhu , J. Gahm , R. Pan , H. Hu , A.C. Begen , D. Oran , Probe and adapt:
Rate adaptation for http video streaming at scale, Selected Areas in Communi-

cations, IEEE Journal on 32 (4) (2014) 719–733 .

[17] T.-Y. Huang , R. Johari , N. McKeown , M. Trunnell , M. Watson , A buffer-based
approach to rate adaptation: Evidence from a large video streaming ser-

vice, in: Proceedings of the 2014 ACM conference on SIGCOMM, ACM, 2014,
pp. 187–198 .

[18] X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A control-theoretic approach for dynamic
adaptive video streaming over http, in: Proceedings of the 2015 ACM Con-

ference on Special Interest Group on Data Communication, in: SIGCOMM ’15,

ACM, New York, NY, USA, 2015, pp. 325–338, doi: 10.1145/2785956.2787486 .
[19] P. Wisniewski , A. Beben , J.M. Batalla , P. Krawiec , On delimiting video rebuffer-

ing for stream-switching adaptive applications, in: 2015 IEEE International
Conference on Communications (ICC), IEEE, 2015, pp. 6 867–6 873 .

20] K. Spiteri, R. Urgaonkar, R.K. Sitaraman, Bola: Near-optimal bitrate adaptation
for online videos, in: IEEE INFOCOM 2016 - The 35th Annual IEEE Interna-

tional Conference on Computer Communications, 2016, pp. 1–9, doi: 10.1109/

INFOCOM.2016.7524428 .
[21] A. Seema , L. Schwoebel , T. Shah , J. Morgan , M. Reisslein , Wvsnp-dash:

Name-based segmented video streaming, IEEE Transactions on Broadcasting 61
(3) (2015) 346–355 .

22] A. Detti , B. Ricci , N. Blefari-Melazzi , Supporting mobile applications with in-
formation centric networking: the case of p2plive adaptive video streaming,

in: Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking, ACM, 2013a, pp. 35–36 .

23] A. Detti , B. Ricci , N. Blefari-Melazzi , Peer-to-peer live adaptive video streaming

for information centric cellular networks, in: Personal Indoor and Mobile Radio
Communications (PIMRC), 2013 IEEE 24th International Symposium on, IEEE,

2013b, pp. 3583–3588 .
[24] W. Song , D. Tjondronegoro , M. Docherty , Saving bitrate vs. pleasing users:

where is the break-even point in mobile video quality? in: Proceedings of the
19th ACM international conference on Multimedia, ACM, 2011, pp. 403–412 .

25] A. Balachandran , V. Sekar , A. Akella , S. Seshan , I. Stoica , H. Zhang , A quest

for an internet video quality-of-experience metric, in: Proceedings of the 11th
ACM workshop on hot topics in networks, ACM, 2012, pp. 97–102 .

26] N. Cranley , P. Perry , L. Murphy , User perception of adapting video quality, In-
ternational Journal of Human-Computer Studies 64 (8) (2006) 637–647 .

[27] S.S. Krishnan , R.K. Sitaraman , Video stream quality impacts viewer behavior:
inferring causality using quasi-experimental designs, IEEE/ACM Transactions

on Networking 21 (6) (2013) 2001–2014 .

28] DASH-264 JavaScript Reference Client., http://dashif.org/reference/players/
javascript/index.html .

29] MPEG-DASH / Media Source demo., http://dash- mse- test.appspot.com/ .
30] Bitmovin Adaptive Streaming Player for MPEG-DASH & HLS., https://github.

com/bitmovin/bitdash-demo .
[31] netem, (accessed November 19, 2015), (http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem).

32] tc - show / manipulate traffic control settings, (accessed November 19, 2015),
(http://linux.die.net/man/8/tc).

[33] Netflix - Watch TV Shows Online, Watch Movies Online., https://www.netflix.
com/ .

34] YouTube., https://www.youtube.com/ .
[35] Vimeo: Watch, upload and share HD and 4k videos with no ad., https://vimeo.

com/ .

36] Microsoft, Bigbcukbunny, 2008 (accessed December, 2014), (http:
//bigbuckbunny.org/index.php/download).

[37] Setup Adaptive Bitrate Streaming with DASH and HLS., https://bitmovin.com/
tutorials/setup-adaptive-bitrate-streaming-dash-hls/ .

http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0001
http://dashif.org/mpeg-dash
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
https://www.w3.org/TR/webdriver/
http://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.wowza.com/forums/content.php?621-Understanding-streaming-protocols-andoutput-file-formats
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
https://doi.org/10.1145/2785956.2787486
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
https://doi.org/10.1109/INFOCOM.2016.7524428
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://dashif.org/reference/players/javascript/index.html
http://dash-mse-test.appspot.com/
https://github.com/bitmovin/bitdash-demo
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://linux.die.net/man/8/tc
https://www.netflix.com/
https://www.youtube.com/
https://vimeo.com/
http://bigbuckbunny.org/index.php/download
https://bitmovin.com/tutorials/setup-adaptive-bitrate-streaming-dash-hls/

102 I. Ayad et al. / Computer Networks 133 (2018) 90–103

[38] ffmpeg, Compiling or installing ffmpeg on ubuntu, (accessed January 15, 2015),
(http://www.ffmpeg.org).

[39] Mp4box, (accessed March,15 2015), (http://gpac.wp.mines-telecom.fr/mp4box).
[40] Generate HAR and Browser NavigationTimingAPI data headlessly with Chrome

and Firefox., https://github.com/parasdahal/speedprofile .
[41] The netfilter.org “libnetfilter_queue” project., http://www.netfilter.org/projects/

libnetfilter _ queue/ .
[42] Super Netflix., https://chrome.google.com/webstore/detail/super-netflix/

aioencjhbaolepcoappllicjebblphoc?subflicks .

[43] Selenium WebDriver., http://www.seleniumhq.org/projects/webdriver/ .
[44] A . Langley , A . Riddoch , A . Wilk , A . Vicente , C. Krasic , D. Zhang , F. Yang ,

F. Kouranov , I. Swett , J. Iyengar , et al. , The quic transport protocol: Design and
internet-scale deployment, in: Proceedings of the Conference of the ACM Spe-

cial Interest Group on Data Communication, ACM, 2017, pp. 183–196 .
[45] G. Carlucci , L. De Cicco , S. Mascolo , Http over udp: an experimental investiga-

tion of quic, in: Proceedings of the 30th Annual ACM Symposium on Applied

Computing, ACM, 2015, pp. 609–614 .
[46] S. Mekki , S. Valentin , Anticipatory quality adaptation for mobile streaming:

Fluent video by channel prediction, in: World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on a,

IEEE, 2015, pp. 1–3 .
[47] S. Colonnese , S. Russo , F. Cuomo , T. Melodia , I. Rubin , Timely delivery versus
bandwidth allocation for dash-based video streaming over lte, IEEE Communi-

cations Letters 20 (3) (2016) 586–589 .
[48] I. Rubin , S. Colonnese , F. Cuomo , F. Calanca , T. Melodia , Mobile http-based

streaming using flexible lte base station control, in: World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Sympo-

sium on a, IEEE, 2015, pp. 1–9 .
[49] S. Cicalo , N. Changuel , R. Miller , B. Sayadi , V. Tralli , Quality-fair http adaptive

streaming over lte network, in: 2014 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 714–718 .
[50] L. De Cicco , S. Mascolo , C.T. Abdallah , An experimental evaluation of akamai

adaptive video streaming over hsdpa networks, in: 2011 IEEE International
Symposium on Computer-Aided Control System Design (CACSD), IEEE, 2011,

pp. 13–18 .
[51] V. Adzic , H. Kalva , B. Furht , Optimizing video encoding for adaptive streaming

over http, IEEE Transactions on Consumer Electronics 58 (2) (2012) .

[52] L. Toni , R. Aparicio-Pardo , G. Simon , A. Blanc , P. Frossard , Optimal set of video
representations in adaptive streaming, in: Proceedings of the 5th ACM Multi-

media Systems Conference, ACM, 2014, pp. 271–282 .

http://www.ffmpeg.org
http://gpac.wp.mines-telecom.fr/mp4box
https://github.com/parasdahal/speedprofile
http://www.netfilter.org/projects/libnetfilter_queue/
https://chrome.google.com/webstore/detail/super-netflix/aioencjhbaolepcoappllicjebblphoc?subflicks
http://www.seleniumhq.org/projects/webdriver/
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029

I. Ayad et al. / Computer Networks 133 (2018) 90–103 103

nterdisciplinary Telecom Program, College of Engineering and Applied Science, University

ystems where he has architected, designed and deployed complex networking solutions
mains. His current position is a senior systems engineer at Cisco, where he performed

ers, partners and prospects on existing Ciscos cloud computing and hosted collaboration

nified Communications, provides consultative support in Collaboration architecture to
ests encompass Networking architecture, Internet protocol stack, in particular TCP/UDP

ing.

r in the Department of Computer Science at University of Colorado Boulder. He received

ering from Seoul National University in 2006 and 2014, respectively. During his graduate
y. His research interest includes mobile data offloading, next-generation Internet, multi-

 Electrical, Computer, and Energy Engineering Department at the University of Colorado,

rsity. His research involves designing and building secure and reliable networked systems
g, operating systems, distributed systems, and computer architecture. Recent research

mic and programmable computing and network infrastructure, via such technologies as
ment toward cloud based services.

e Department of Computer Science at the University of Colorado at Boulder. He received

University. He co-founded the Princeton EDGE Lab as its first Associate Director in 2009
r at Princeton University from 2010 to 2013. He is a co-founder and the founding CTO/VP

works, and is a technical consultant to a few startups. His research focuses on building

enior Member and serves as an Associate Editor for IEEE Internet of Things Journal. He
Mr. Ibrahim Ayad Ibrahim Ayad is a PhD student in the I

of Colorado at Boulder. He has over 15 years with Cisco S
in the service provider and enterprise voice and video do

in-depth and high-level technical presentations for custom

services offers. Actively participating as a specialist on U
partner’s and Cisco systems engineers. His research inter

reliable transport, Video coding, and HTTP adaptive stream

Dr. Youngbin Im Youngbin Im is a postdoctoral researche

his B.S. and Ph.D. degrees in computer science and engine
program, he was a visiting student at Princeton Universit

core based content router, video rate adaptation.

Dr. Eric Keller Eric Keller is an Assistant Professor in the

Boulder. He received his PhD in 2011 from Princeton Unive
using a cross-layer approach that draws from networkin

has focused on enabling and capitalizing on a more dyna
virtualization, software-defined networking, and the move

Dr. Sangtae Ha Sangtae Ha is an Assistant Professor in th

his Ph.D. in Computer Science from North Carolina State
and led its research team as an Associate Research Schola

Engineering of DataMi, a startup company on mobile net

and deploying practical network systems. He is an IEEE S
received the INFORMS ISS Design Science Award in 2014.

	A Practical Evaluation of Rate Adaptation Algorithms in HTTP-based Adaptive Streaming
	1 Introduction
	2 Related Work
	3 Experimental Framework
	3.1 Metrics and Setup Description
	3.2 Goals / Objectives
	3.3 Experiment and Testbed Setup
	3.4 Tested HAS Players
	3.4.1 Open Source DASH Players
	3.4.2 Commercial Streaming Players

	4 Standalone Scenarios
	4.1 Experimental Settings
	4.2 Results

	5 Advanced Scenarios
	5.1 Experimental Settings
	5.2 Impact of Dynamic Bandwidth
	5.3 Impact of Background Traffic
	5.4 Impact of Multiple Players

	6 Enhancing the Accuracy of DASH’s Bandwidth Estimation
	7 Key Observations and Suggestions
	8 Limitations and Future Work
	9 Conclusion
	 Acknowledgments
	 References

