Computer Networks 133 (2018) 90-103

Contents lists available at ScienceDirect

%mp ter
fW rKs
Computer Networks (g™

journal homepage: www.elsevier.com/locate/comnet

A Practical Evaluation of Rate Adaptation Algorithms in HTTP-based n

Adaptive Streaming

Check for
updates

Ibrahim Ayad, Youngbin Im*, Eric Keller, Sangtae Ha

University of Colorado, Boulder, United States

ARTICLE INFO

Article history:

Received 16 July 2017

Revised 14 January 2018
Accepted 16 January 2018
Available online 3 February 2018

Keywords:

HTTP-based Adaptive Streaming
Dynamic Adaptive Streaming over HTTP
MPEG-DASH

Evaluation

ABSTRACT

The HTTP-based Adaptive Streaming (HAS) techniques are widely used in Internet video streaming ser-
vices, including YouTube and Netflix. The Dynamic Adaptive Streaming over HTTP (DASH) is the latest
international standard that facilitates the interoperability of different HAS techniques of various vendors.
DASH specification defines the media presentation description (MPD), which describes a list of available
content, URL addresses, and the segment format. The rate adaptation algorithms, however, are not part of
the standard, and the details of the algorithms are left to vendors. As a result, there are many different
algorithms adopted in both commercial and open source players while the detailed algorithms and their
performance are barely understood. In this paper, we investigate the detailed operations of the differ-
ent players by code level analysis and through reverse engineering. Specifically, we present the pseudo
codes of 3 open source players and devise a method to obtain the detailed operation information, e.g.,
bitrate and buffer amount, of popular streaming players whose source codes are not publicly available.
We conduct extensive experiments on our testbed and provide suggestions based on the behaviors of
these players, including the repeated over-estimation of the available bandwidth, unfair bitrate selection
when multiple players compete for the bandwidth, and insensitivity of Quick UDP Internet Connections

(QUIC) protocol to the varying network bandwidth.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recent studies show that video traffic on the Internet has
grown exponentially over the years. Cisco [1] anticipated consumer
Internet video traffic will be 80 percent of all consumer Internet
traffic in 2019, up from 64 percent in 2014. It will reach 89,319
petabytes (one petabyte equivalent to one million gigabytes) per
month in 2019. This increase in video traffic is mainly due to re-
cent developments of devices and streaming technologies for video
services.

Initially, Internet video streaming was implemented by using
traditional streaming protocols such as Real Time Protocol (RTP)
over User Datagram Protocol (UDP). But since firewalls usually
block UDP packets in the networks, making it hard to deliver the
content to the users, the use of HTTP over TCP for video stream-
ing was the natural next step for the streaming industry. In fact,
HTTP provides several advantages over its predecessors. It enables
the reuse of existing web infrastructure such as web proxies and
content distribution networks (CDNs). The HTTP-based progressive

* Corresponding author.
E-mail addresses: ayad.ibrahim@colorado.edu (I. Ayad), youngbin.im@colorado
.edu (Y. Im), eric.keller@colorado.edu (E. Keller), sangtae.ha@colorado.edu (S. Ha).

https://doi.org/10.1016/j.comnet.2018.01.019
1389-1286/© 2018 Elsevier B.V. All rights reserved.

download was used for video dissemination as was leveraged by
YouTube in its early days, but it had no adaptability to varying net-
work conditions, leading to the adoption of HTTP-based Adaptive
Streaming (HAS) solutions.

In HAS, the video is segmented into several-second time in-
tervals (2 to 10 seconds, typically) and encoded into multiple bi-
trates. Then the HAS client selects the best bitrate that fits the cur-
rent network conditions. The MPEG Dynamic Adaptive Streaming
over HTTP (DASH) [2] is a standard for HAS solutions. MPEG-DASH,
however, standardizes only the meta information of the video con-
tent, specifying the details of each video segment such as duration,
encoding rates, and the URL address, not the rate adaptation [3].

Even though extensive work has been done in the HTTP adap-
tive streaming arena, earlier experimental works [4-6] only fo-
cus on the performance of streaming players in constrained exper-
imental scenarios. They do not perform a detailed study of rate
adaptation algorithms, which are player specific and thus are not
well-known. Our work differs from previous works in several ways.
First, while many of the previous HAS evaluation works centered
on the comparison of proprietary HAS players, our evaluation also
covers systems developed under the MPEG DASH standard. Sec-
ond, the operational information of commercial streaming play-
ers investigated in previous works was limited, but we introduce

https://doi.org/10.1016/j.comnet.2018.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.01.019&domain=pdf
mailto:ayad.ibrahim@colorado.edu
mailto:youngbin.im@colorado.edu
mailto:eric.keller@colorado.edu
mailto:sangtae.ha@colorado.edu
https://doi.org/10.1016/j.comnet.2018.01.019

I. Ayad et al./Computer Networks 133 (2018) 90-103 91

novel mechanisms to obtain detailed information from commercial
streaming players whose source codes are not public. In this paper,
we make the following contributions:

1. We provide the detailed operation of rate adaptation of sev-
eral existing DASH clients by code level analysis. MPEG does
not standardize the rate adaptation, so it is different on each
implementation.

2. We devise a method to obtain the detailed operation infor-
mation (e.g., bitrate, buffer amount) of popular commercial
streaming players whose source code are not publicly available.
We utilize a browser extension, WebDriver [7], to programmat-
ically collect and control the behavior of the players.

3. On our HAS experiment testbed, we conduct extensive exper-
iments by varying different parameters and find several ob-
servations on the performance of 6 up-to-date representative
HAS/DASH clients: (i) there are significant differences among
the players in terms of bitrate adaptation, primarily due to the
differences in the video type of service (i.e., YouTube, Netflex,
or Vimeo), (ii) some clients repeatedly over-estimate the avail-
able bandwidth, (iii) the bitrate selection is unstable and unfair
when multiple clients compete, even with the clients of homo-
geneous algorithms, and (iv) the Quick UDP Internet Connec-
tions (QUIC) protocol used by YouTube player is insensitive to
the varying network bandwidth and arrivals of other TCP flows,
reducing its fairness with other players.

4, We identify one of the main causes of rate adaptation misbe-
haviors in the HAS players, which we call “buffer effect,” and
present a solution to mitigate this effect. The presented solu-
tion is generally applicable to history-based bandwidth estima-
tion algorithms.

5. Based on the observations from experiments, we suggest sev-
eral guidelines to help improve the performance (i.e., band-
width estimation and fairness) of rate adaptation algorithms on
different players.

The rest of the paper is organized as follows. We briefly discuss
related works in Section 2. Then we introduce our experimental
framework and the detailed operation of HAS clients we used for
the experiments in Section 3. We examine the operation of sev-
eral HAS clients in various network environments in Section 4.
Section 5 evaluates the performance of HAS clients in more ad-
vanced scenarios with varying bandwidth, background traffic, and
multiple players. Section 6 provides the details of buffer effect we
identified and presents its solution. Section 7 summarizes the key
observations and suggests several solutions, while Section 8 dis-
cusses the limitations of the paper and future work. Finally, we
conclude the paper in Section 9

2. Related Work

Many HAS solutions have been proposed for seamless video ser-
vices in varying network conditions. Representative solutions are
Adobe Systems HTTP Dynamic Streaming (Adobe HDS) [8], Ap-
ple HTTP Live Streaming (Apple HLS) [9], and Microsoft Smooth
Streaming (Microsoft SS) [10]. The MPEG standardizes these pro-
prietary solutions under the name of Dynamic Adaptive Stream-
ing over HTTP (DASH) [2]. In DASH standards, a video server keeps
multiple versions of the same video, encoded at different bitrates
and quality levels, and splits the video into a set of multiple small
segments. Before transmitting the video, the server provides DASH
clients with a Media Presentation Description (MPD) manifest file.
The MPD describes the video chunk information such as timing,
language, timed text, and media characteristics such as video reso-
lution and bitrate. Clients make the decision on which segment to
download and sequentially request video chunks based on network
conditions, device capabilities, and other factors [11].

Many studies have been conducted with respect to HAS.
Seufert et al. [12] surveys the technical development of HAS, in-
cluding both open standardized and proprietary solutions, focus-
ing especially on users’ Quality of Experience (QoE). Among previ-
ous works, several papers are related to experimental evaluation of
HAS players. The vast majority of them focused on mainly propri-
etary adaptive streaming systems [4-6]. Akhshabi et al. [4] eval-
uated two commercial HAS players (Netflix and Microsoft Sliv-
erlight) and an open source player. They found significant ineffi-
ciencies with regards to the adaptation to changing network con-
ditions in all of the evaluated clients. Mueller et al. [5] experi-
mentally evaluated several HAS systems such as Apple HLS, Adobe
HDS, and Microsoft SS. They compared their implementation of
MPEG-DASH with these proprietary solutions in vehicular environ-
ments. Akhshabi et al. [6] investigated the problem of contention
among players and revealed that the typical behavior of a HAS
player in the steady state, including ON-OFF periods, can be the
leading cause of the fairness problem in adaptive video stream-
ing. Zabrovskiy et al. [13] introduce an adaptive video streaming
evaluation framework to enable the automated testing of video
players with various conditions. The focus of the framework is to
provide tools for easy and rapid experimentation of players and
algorithms. Stohr et al. [14] also provide a public execution en-
vironment for DASH players to enable a systematic comparison
among them. These two works, [13,14], are similar to our approach
in that they provide a systematic evaluation framework for adap-
tive streaming players, but they do not provide a source code level
analysis of popular DASH players and a support for popular com-
mercial streaming players.

Other major research focus for HAS has been on the adapta-
tion algorithms. Jiang et al. [15] developed bitrate adaptation tech-
niques that consider the tradeoffs among stability, fairness, and ef-
ficiency. Li et al. [16] showed that the discrete characteristics of the
video bitrates make it hard for clients to perceive their fair shares
of bandwidth and proposed an adaptation algorithm similar to TCP
congestion control. Huang et al. [17] proposed a buffer-based adap-
tation algorithm in which the capacity estimation is used only dur-
ing the startup phase. Yin et al. [18] proposed a model-predictive
control algorithm that combines the throughput and buffer occu-
pancy information. Wisniewski et al. [19] proposed an approach
based on the estimated probability of video rebuffering, which is
calculated by using an analytic model of playout buffer and char-
acteristics of segment download time. Spiteri et al. [20] formulated
the bitrate adaptation into a utility maximization problem and pro-
poses an online control algorithm which uses the Lyapunov op-
timization technique for minimizing rebuffering and maximizing
video quality.

There have been novel approaches on the adaptive stream-
ing, especially focusing on different network environments.
Seema et al. [21] proposed the wireless sensor compatible
DASH (WVSNP-DASH) framework in which each video seg-
ment can be played without any reference to any file or
segment to support light-weight video streaming for sensors.
Detti et al. [22,23] presents an Information Centric Networking
(ICN) based P2P live streaming application in which neighboring
cellular devices can increase the quality of video playback with the
help of other devices.

3. Experimental Framework

In this section, we present our testbed and the implementation
details of the HAS players that we used for the evaluation.

92 I. Ayad et al./Computer Networks 133 (2018) 90-103

3.1. Metrics and Setup Description

In our experiment settings, we obtain the variations of bitrate,
the amount of buffers, and the throughput of each player. Addi-
tionally, we extract the delay of the video/player initialization pro-
cess. From the data obtained, we calculate the performance metrics
that significantly affect the QoE for HAS users.

- Average Bitrate: Since users normally prefer the video of higher
quality, this metric is an important factor that can measure the
satisfaction of users. However, notice that the utility to users
does not increase proportionally as the bitrate increases [24].
Number of bitrate changes: The frequency of bitrate changes
adversely affects the users’ satisfaction. Therefore, a video of
lower bitrates with fewer bitrate changes may provide higher
satisfaction to users than the video of higher bitrates with more
bitrate changes [25,26].

Rebuffering time: When the quantity of buffered video is not
sufficient, the players stop the playback and resume after a suf-
ficient amount of video is buffered. We estimate the total time
in which the buffer length is less than one second as the re-
buffering time. For players that we cannot directly obtain the
buffer information, we estimate the buffer length by consid-
ering the reception of the segments and playout time of each
segment. Let t be the current time, B(t) be the estimated buffer
length at time t. Also, let us assume that ¢; is the video playout
length of ith segment, s; is the jth rebuffering time, and ry is
the reception time of the first segment. We represent the num-
ber of segments received up to t as N(t) and the number of
rebufferings up to t as M(t). Then the estimated buffer length
B(t) can be represented by

N(t) M(t)

Bt) =Y ti—(t=> s;i—1o
i=1 Jj=1

Startup delay: The startup delay of video significantly affects
the users’ abandonment rate when playing the video [27].
Therefore, we obtain the startup delay by letting two users
manually measure it while playing the video.

3.2. Goals / Objectives

Our experiments aim at finding the key characteristics and
problems of HAS players in various network environments. We
tested the players in different scenarios to see how HAS players
adapt in (i) Standalone scenarios (Section 4), and (ii) Advanced sce-
narios (Section 5). We also provide a solution to an incorrect band-
width estimation issue causing misbehavior of the rate adaptation
by (iii) Enhancing the accuracy of DASH’s bandwidth estimation
(Section 6).

3.3. Experiment and Testbed Setup

Intensive work has been done in the HTTP adaptive stream-
ing arena, but a number of components require additional inves-
tigation. First, many of the previous HAS evaluation works, e.g.,
[4-6], centered on the comparison of proprietary HTTP Adaptive
Streaming players. On the other hand, our evaluation covers sys-
tems developed under the MPEG DASH standard. We consider to-
day’s state-of-the-art DASH solutions such as DASH Industry Fo-
rum Reference Client [28] (we call it DASH-IF player in short),
Google’s MPEG-DASH Media Source demo [29] (we call it DASH-
Google player for short), and Bitmovin adaptive streaming demo
player for MPEG-DASH [30] (we call it Bitmovin player for short)!.

1 The Bitmovin player in [30] is a demo implementation, and it does not reflect
the adaptation logic of the actual commercial Bitmovin player.

HAS Client

Video Server
(Public streaming
services)

-D

Log

WAN

Video Server Emulator

(For DASH
players)

HAS Client

Custom-encoded

HAS Client
Controller en

Experiment

e Data plane

HAS Client

Y |

Control plane

Fig. 1. Experimental framework. Dark gray components are added to the general
HAS systems.

Second, previous works such as [4-6] do not conduct the experi-
ments with enough repetition to identify tangible observations. In
our work, we repeat each experimental setting with several runs
to find the general characteristics of player behaviors. Third, ear-
lier experimental works, e.g., [4-6], did not test the HAS players
with various factors that can affect the performance. Our experi-
ments consider not only various system parameters, but also real-
istic network environments, including background traffic, changing
bandwidth, and coexistence of multiple HAS algorithms.

We designed our experiment framework as shown in Fig. 1. The
testbed consists of a video server, an experiment controller, a WAN
emulator, and several HAS clients. The experiment controller initi-
ates an experiment by passing the experiment settings described
in an experiment scenario to the WAN emulator and HAS clients.
After the experiment is completed, the experiment controller col-
lects the log files and stores them in the database, then displays
the graphs with the experiment results. The WAN emulator pro-
vides a realistic network environment by reflecting factors such
as the bandwidth, packet loss, and delay. It is implemented us-
ing netem [31] and Linux tc [32]. The video server resides on the
testbed for 3 DASH players, i.e., DASH-IF, DASH-Google, and Bit-
movin. On the other hand, the video servers of commerical stream-
ing players we tested (i.e., Netflix [33], YouTube [34], Vimeo [35])
are located at the data center or CDN (content delivery network)
for the service providers.

Table 1 shows the content informaton used for our evaluations.
We used Big Buck Bunny video clip [36] for the source video in the
case of 3 DASH players. The playout duration of the video source
was 9 minutes 56 seconds, and the resolution was 1920x1080. We
used Bitmovin’s encoding service as guided in [37] to encode the
video for DASH-IF and Bitmovin players. We encoded the video us-
ing an H.264 video codec, and into 5 bitrates, 400, 800, 1200, 2400,
and 4800 Kbps, with 4-seconds segment durations for these two
players. To generate the video files and MPD suitable for DASH-
Google player, we used a free media encoder ffimpeg [38] and DASH
segmenter (MP4Box-GPAC) [39]. The video was encoded using an
H.264 video codec with 5 different bitrates, 522, 1200, 2100, 2500,
and 4200 Kbps, and fragmented into chunks of 2 seconds. For the 3
commercial streaming players, we arbitrarily selected videos with
a play duration longer than that of Big Buck Bunny video clip (1
hour 34 minutes for Netflix, 10 minutes 34 seconds for YouTube,
and 10 minutes 36 seconds for Vimeo). The video for Vimeo was
encoded with 7 different bitrates, 301, 357, 713, 1043, 2650, 5590,
and 15052 Kbps, with 6-seconds segment durations. The video of
YouTube was encoded with 8 different bitrates, 109, 245, 363, 709,
1347, 2383, 5729, and 10649 Kbps, while that of Netflix was en-
coded with 9 different bitrates, 100, 290, 370, 560, 870, 1270, 1780,
2610, and 3830 Kbps. For YouTube and Netflix, we couldn’t find the
exact segment duration since the video is encrypted. We ran the

I. Ayad et al./Computer Networks 133 (2018) 90-103 93

Table 1
Content information used for our evaluations.

Media player Segment duration (secs) Play duration (mins:secs) Codec Source Video Bitrates (Kbps)

DASH-IF 4 9:56 H.264 Big Buck Bunny 400,800,1200,2400,4800

DASH-Google 2 9:56 H.264 Big Buck Bunny 522,1200,2100,2500,4200

Bitmovin 4 9:56 H.264 Big Buck Bunny 400,300,1200,2400,4800

Vimeo 6 10:36 H.264 Arbitrarily selected 301,357,713,1043,2650,5590,15052

Netflix Unknown 94:00 H.264/AVC and HEVC Arbitrarily selected 100,290,370,560,870,1270,1780, 2610,3830
YouTube Unknown 10:34 H.264/VP8 Arbitrarily selected ~ 109,245,363,709,1347,2383, 5729,10649

experiments for 10 minutes for all players so that the experiment
time fits the minimum play duration of the selected videos.

In order to automate the experiment, we used WebDriver [7] to
systematically interact with HAS clients. With WebDriver, we can
open a HAS video web page, obtain the values of specific elements
on the page that contain information such as bitrate, buffer size,
and click buttons to enable certain functions of the player. For
Vimeo player, since it does not provide elements to display the in-
formation of bitrate or buffer length, we use speedprofile [40]. It
opens the player web page, plays the video, and returns the infor-
mation on the downloaded video segments such as URLs, size, and
timing, which are used to obtain the bitrate and buffer length.

To calculate the throughput variation, we utilize libnetfil-
ter_queue [41], a userspace library providing an API to access the
packets queued by the kernel packet filter. We implement a pro-
gram using this API that accesses every packet for the HTTP stream
used for the video streaming; gets the time, size information
of packets; and calculates the throughput variation of the video
stream.

3.4. Tested HAS Players

In this section, we list the HAS players that we used for the ex-
periments and explain how we obtained the information about the
operations for players which require special measurement meth-
ods. For players whose source code is available, we present rate
adaptation algorithms through a code level analysis. For all al-
gorithms, we use the following common notations. i is the cur-
rent segment number, and each algorithm decides the bitrate of
(i+ 1)th video segment. N; represents the bitrate of ith segment,
while I; represents the bitrate index of ith segment. bw; is the
measured bandwidth of ith transmitted video segment (by using
transmission time and segment size). We assume that the num-
ber of encoded bitrates is m, and the encoding rate of index k is
Ry. The encoding rate of larger index is higher than that of smaller
index (for 1<j<k<m, Rj <Ry).

3.4.1. Open Source DASH Players

DASH-IF Player: Algorithm 1 is the pseudo-code for the bitrate
adaptation algorithm of DASH Industry Forum Reference Client
2.3.0 [28]. The algorithm determines the bitrates using a combina-
tion of multiple rules. The throughput rule averages the through-
puts of several downloaded segment samples and changes the bi-
trate to the maximum available if the buffer is sufficient. The in-
sufficient buffer rule changes to the lowest bitrate if re-buffering
happens and decreases the bitrate by increasing the differences if
the buffer length is between 4 and 8 seconds. The buffer occu-
pancy rule chooses the highest bitrate if the buffer length is larger
than 20 seconds. The abandon requests rule tracks the throughput
of each segment. If the estimated time for downloading the cur-
rent segment is significantly larger than the segment duration and
the remaining bytes are larger than the total estimated bytes of a
candidate rate for switching, the algorithm abandons the download
and switches to the candidate rate. The candidate rate is decided
as the maximum bitrate that can be maintained, considering the

4.0008.219.011
"DCH.02-CMZHNES 14YFWVRYNHRUKXCJFK75410

nt: Mozila/5.0 (Windows NT 10.0; WOWB4) AppleWebK/537.38 (KHTML. ke Gecko) Chrome/58.0.2024 87 Safar/537.38

vield: 70274013

Trackingld: 1417021

25
Xid: 1487724172307 (14877241172307)

Player state: Normal
dng state: Normal
g state: Playing
Playing bitrate (a/v): 64 / 100 (res: 320x240, par: 4x3)
Playi fing vmat: 38/85.
(aiu): 64 / 3160
4808215/ 74082801 _
Bytes: 76417544
Seconds (aiv): 220.813/220.611
uffer: faise
‘CDN (alv): c001.den001.cenic isp.nfixvideo.net, Id: 38973 / c001.den001.cenic isp.nficvideo.net, Id: 38673

Profile: dfp-is-sdh, Id: T1:17:80,0:0;

Fig. 2. Netflix player with a plug-in to display the detailed video information is
shown.

throughput history. This method is to prevent buffer underflow in
case of abrupt bandwidth drops. In addition, DASH Industry Forum
Reference Client implements the adaptation algorithm presented
in [20].

DASH-Google Player: The adaptation algorithm of Google'’s
MPEG-DASH Media Source demo [29] is shown in Algorithm 2 .
It maintains two bandwidth estimation variables. It uses different
exponential, moving average coefficients for these two variables to
reflect small scale and large scale bandwidth variations. It chooses
the minimum of the two when determining the bitrates.

Bitmovin Player: Algorithm 3 is the pseudo-code for the rate
adaptation of Bitmovin player [30]. It consists of two switching
methods: preferred startup switching and rate-based switching.
The preferred startup switching overrides the rate suggested by
other switching methods with a maximum rate that is equal to or
smaller than the preferred startup rate if two conditions are met:
the player is in the startup phase and the suggested rate is smaller
than the preferred rate. The rate-base switching method selects the
maximum rate that is smaller than the estimated bandwidth. The
bandwidth is estimated by averaging the measured bandwidths of
recently received segments with higher weights on more recent
segments.

3.4.2. Commercial Streaming Players

Netflix Player: Netflix player [33] is one of the most popu-
lar video streaming players. Information such as bitrate selected,
buffer length, and throughput is not directly obtainable from the
player’s user interface. Therefore, we use a Chrome extension pro-
gram called SuperNetflix [42] (shown in Fig. 2), which provides de-
tailed information about the video, playout status, and CDN where
the video is downloaded. When playing the video, the information
is not shown automatically. We use Selenium WebDriver [43] in
order to find the web component that represents the button for
opening the information panel on the browser and to click it pro-
grammatically. We also use Selenium WebDriver to obtain the in-
formation shown on the information panel, which is in the form of
text, and parse it to obtain the performance metrics.

94

Algorithm 1: Bitrate adaptation algorithm of DASH Industry
Forum Reference Client.

n <« 3 // the number of bandwidth estimation samples (3
for VOD)

Tiow < 4 // the threshold for deciding that the buffer
length is low

Tiich < 20 // the threshold for deciding that the buffer
length is sufficient

s <1 // the step down factor for decreasing the
bitrate when the buffer length is low

Biotal < // the total bytes for segment i

Beur < // the total received bytes up to now for
segment |

Telapsed < // the elapsed time from the download of first
byte for segment i

THgrr < // the throughput array used in abandon
requests rule (in bps)

I <5 // the minimum length to average the throughput
in Abandon requests rule

Tgrace <= 0.5 // the grace time threshold used in abandon
requests rule

Capg < 1.8 // the constant for the decision of
abandoning the segment in abandon requests rule

D <« // the segment duration

Throughput rule:

sum < 0

for j<Oton—-1do
| sum < sum+ bw;_;

Bandwidth < sum/n // Estimated bandwidth
if Buf fer_len >=T,,, - 2 then
for k <~ mto 1 do
if Bandwidth >= R, then
L Nipy < Ry
break

Insufficient buffer rule:
if rebuf fering then
| Nigp < Ry
else if Tj,, < Buf fer_len < Tj,,, - 2 then
L Nip1 < Rp—s
S«<s+1

Buffer occupancy rule:
if Buf fer_len > T,;, then
L Niy1 < Rm
Abandon requests rule (called multiple times for a segment):
add BCUT/TeIapsed to THan»
if length(THarr) > | and Toigpseq > Tgrace and Beur < Byorq then
THayg < average of THyyy
TpownEst < Brotar % 8/THavg // estimated download time

if TDownEst <Dx Caba then
L return

else
Rpew < the maximum bitrate that can be covered by
THgyg
Best < Byorar * Rnew/N;
Bremain < Brotal — Beur
if Bremain > Best then
L abandon and switch to quality Rpew

I. Ayad et al./Computer Networks 133 (2018) 90-103

Algorithm 2: Bitrate adaptation algorithm of Google’s MPEG-
DASH Media Source demo.

Egow < // the bandwidth estimation for slow channel

variation

Efqst < // the bandwidth estimation for fast channel
variation

Usjow < 0.99 // the exponential moving average
coefficient for Egy,

Qfgst < 0.98 // the exponential moving average

coefficient for Ejfqq

Bandwidth estimation update:
while video data is downloaded do

Egow < 10w - Esiow + (1 — 0gny) - download_throughput
L Efqst < ®ast - Efast + (1 — @ gqge) - download_throughput

Bitrate decision:
Bandwidth < min(Ejey, Efest) // Estimated bandwidth
for k <~ mto1do
if Bandwidth >= R;, then
L Nij1 < Ry
break

=
D

Yﬂu Search

Video ID: jIM4-HLIUMO
Dimensions: 640 x 360
Resolution: 1280 x 720@24
Volume: 100%
Stream Host: r11—sn-qxo7sn7s

BUrEK| PSU
Mime Type: video/webm; codecs="vp9"
DASH: yes (247/251)
Connection Speed: _____ usessne SN 32714 Kbps
Buffer Health: s St 74.8 s

Network Activity: ko) 0kB
Dropped Frames: 12/1036

Fig. 3. YouTube player with an option to display the detailed video information
enabled is shown.

YouTube Player: The YouTube player [34] provides a function to
display detailed video playback information called ‘Stats for nerds’
(shown in Fig. 3). By default, this function is not enabled. There-
fore, we use Selenium WebDriver to find the button on the web
page to enable it and click it programmatically as is done for the
Netflix player. We also parse the text in the information panel to
obtain the performance metrics.

Vimeo Player: We found that Vimeo player [35] uses different
values in the specific part of the URL for different bitrates. Before
the experiments, we play the video with different fixed bitrates
and obtain the mapping between the values of URL parts rep-
resenting bitrate and corresponding bitrates. During experiments,
we use this mapping to figure out the actual selected bitrates.
For buffer length estimation, we use the method explained in
Section 3.1.

4. Standalone Scenarios

In this section, we evaluate the performance of HAS players de-
scribed in Section 3.4 by running each video player in different
network settings.

I. Ayad et al./Computer Networks 133 (2018) 90-103 95

5000 ASH 5000 ASH-TF —i— 5000 ASH-F
DASH-GOOGLE —#— DASHEﬁOrw%G\/L\E —— DASH-GOOGLE —8—
BITMOVIN NETFLIX —%— BITMOVIN
—_ NETFLIX —%— —_ —_ NETFLIX —%—
@ 4000 || vours Q4000 r| YOUNES @ 4000 | vouruee
Qo Q e}
< < <
o] L 9 3 Q L
g 3000 & 3000 8 3000
2 2000 % 20001 2 2000 o —— |
[r) F ® -
Qo o [}
Z 1000 / Z 1000 | Z 1000 | T
0 n n 0 n n 0 n n n
1024 2048 3072 Unlimited 0 50 100 300 0 2 4 6 8
Bandwidth (Kpbs) Delay (msec) Packet Loss (%)

(a) Average bitrate versus bandwidth.

(b) Average bitrate versus delay.

(c) Average bitrate versus packet loss.

Fig. 4. The average bitrates for 6 players are compared in different bandwidth, delay, and packet loss conditions. The default bandwidth, delay, packet loss rate are 3 Mbps,

0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

Algorithm 3: Bitrate adaptation algorithm of Bitmovin player.

Preferred startup switching:
t < // the time passed from start
S < // the index of the rate suggested by other
switching methods
Rpre <= // the preferred startup rate
if t < 10 then
for k <~ mto 1 do
if k = s then
| return Niiq < Rs
if R, <= Ryre then
| return Niiq < Ry

return Nij;1 < Rn

else
| return Nj 1 < Rs

Rate based switching:

// Bandwidth estimation update

depth < // the number of downloaded segments to use
for bandwidth estimation

Npyg <= // the buffer size in segment numbers

sum <0

for j < O to depth—1 do

| sum < sum+bw;_j- (1 - j/Nyyp)

Bandwidth < sum/depth // Estimated bandwidth
// Bitrate decision
Ryin < Infinity
Rmax <= 0
for all encoding rate index k do
if Rmax < Ry and Ry < Bandwidth then
L Rmax < Rk
if Rm,’n > Rk then
L Rmin < Ry
if Rmax > 0 then
L Niz1 < Rmax

else
L Ni+1 < Rpin

4.1. Experimental Settings

We run one player of each algorithm and change the experi-
mental settings as follows for the evaluation in various network

circumstances. We vary the network bandwidth from unlimited
to limited bandwidth with various values (1024, 2048, and 3072
Kbps). We also vary the network round trip time (0, 50, 100, and
300 msec) and packet loss rate (0, 2, 4, 6, and 8 %). We repeat
every experiment 5 times and average the performance metrics.

4.2. Results

Impact of bandwidth, delay, and packet loss on average bi-
trate: The average bitrates of the six players are compared at
different bandwidths in Fig. 4a. As expected, the average bitrate
increases as the network bandwidth increases. However, we ob-
served some players closely follow the assigned bandwidth, e.g.,
Bitmovin, but some players conservatively adapt to the bandwidth,
e.g., Vimeo. By looking into the internal variables of the players, we
also find that the bandwidth estimation variables and the bitrates
selected by DASH-IF and DASH-Google clients sometimes become
very large. We presume that this over-estimation of the bandwidth
is due to the buffer effect. Since the player estimates the band-
width by looking at the retrieval speed of video data, if the data
retrieval occurs in a batch, the client overestimates the bandwidth.
We discuss this issue in Section 6 in more detail.

The average bitrates of the six clients are compared at different
network delays and packet losses in Fig. 4 b and 4 c. As the delay
increases, the average bitrate deceases in most players, except sev-
eral exceptional cases in Netflix and Vimeo players. YouTube does
not adapt to different RTTs. We presume that the insensitiveness
of the YouTube player to the variation of RTT is due to the char-
acteristics of the transport protocol used by the Chrome browser
for YouTube service, i.e., QUIC, different from the normal TCP al-
gorithm. QUIC [44,45] is a transport protocol designed by Google
to improve performance of HTTPS. It replaces most of the tradi-
tional HTTPS protocol stack and is developed as a user-space trans-
port based on UDP. Even though QUIC has its own rate control
algorithm, it is presumed that the algorithm is not so sensitive
to the network variation and other competing flows in the net-
work. We conducted various experiments that show the behavior
of QUIC in more detail in Section 5. The relation of the average bi-
trate and packet loss rate is as expected: as the packet loss rate
increases, the average bitrate decreases. Again, the YouTube player
is not adaptive to the loss rate, unlike other players.

Impact of bandwidth, delay, packet loss on number of bitrate
changes: We look into how the bandwidth, delay, and packet loss
affect the number of bitrate changes in Fig. 5a,5b, and 5c, respec-
tively. In DASH-IF, Bitmovin, and Netflix players, the number of bi-
trate changes decreases as the bandwidth increases. We presume
that this is because there are more available video bitrate options
at lower bandwidth. We can also observe that the number of bi-

96 I. Ayad et al./Computer Networks 133 (2018) 90-103

100 DASH-TF —— 100 ASH-1 100 DASH-TF —F—
DASH-GOOGLE —— DASH-GOOGLE —8— DASH-GOOGLE —@—
[BITMOVIN [ITMOVIN [BITMOVIN
g) NETFLIX —¥— g NETFLIX —%— 8) NETFLIX —%—
€ 80| NS e 80 OVMES € 80 | VS
© © ©
< < <
5} [5} [5}
2 60 L 60] 60
© © ©
= = =
a a a
kS 5 40 kS
o o o
[9] [9] [
o o o
S £ 20 S
S S =1
z z z
0 : — 0
1024 2048 3072 Unlimited 0 50 100 300 0 2 4 6 8

Bandwidth (Kpbs)

(a) The number of bitrate changes ver-

sus bandwidth. sus delay.

(b) The number of bitrate changes ver-

Delay (msec) Packet Loss (%)

(¢) The number of bitrate changes ver-
sus packet loss.

Fig. 5. The number of bitrate changes for 6 players is compared at different bandwidth, network delay, and packet loss conditions. The default bandwidth, delay, packet loss
rate are 3 Mbps, 0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

40

40 - 40

Bandwidth (Kbps)

(a) The rebuffering times versus band-
width.

Delay (msec)

(b) The rebuffering times versus delay.

ASHIF —+— ASHIF —+— ASHIF —+—

T a5 [\ T T o RS T I
- 357 NETFLIX —%— - 357 NETFLIX —%— - 357 NETFLIX —%—
S TUBE S 5 S e
§ 30 § 30 § 30 ¢
~ 25} ~ 25} ~ 25}
g g g
E 20t E 20t E 20t
2 157 2 157 2 157
£ 10f £ 10} £ 10}
> > > [
© 5 g s g 5|
o o | o

0 0 0

1024 2048 3072 Unlimited 0 50 100 300 0 2 4 6 8

Packet Loss (%)

(c) The rebuffering times versus packet
loss.

Fig. 6. The rebuffering times for 6 players are compared at different bandwidth, delay, and packet loss conditions. The default bandwidth, delay, packet loss rate are 3 Mbps,

0 msec, 0%. We vary only bandwidth in (a), delay in (b), loss rate in (c).

trate changes of Bitmovin is exceptionally higher than other play-
ers. We presume the algorithms of the Bitmovin player that use
a simplified bandwidth estimation approach without considering
the buffer status are related to this unstable behavior. For DASH-
Google, YouTube, and Vimeo, the number of bitrate changes are
marginal regardless of the bandwidth. We cannot observe a defi-
nite relation between the number of bitrate changes and the de-
lay. The relation of the number of bitrate changes and the packet
loss is clear in DASH-IF, DASH-Google, and Netflix players. How-
ever, other players, including Bitmovin, YouTube, and Vimeo play-
ers, are rather insensitive to the packet loss rate.

Impact of bandwidth, delay, and packet loss on rebuffering
time: The relations between the rebuffering time and the band-
width, delay, and packet loss are shown in Fig. 6a,6 b, and 6 c,
respectively. Roughly, the rebuffering time increases as the band-
width decreases and as the network delay increases for DASH-IF
and Bitmovin players, but there are lots of exceptions. Other play-
ers do not exhibit rebuffering except the case of 1024 Kbps band-
width with the Netflix player. From Fig. 6¢ showing that most of
players exhibit no rebuffering time in different packet loss rates,
we can presume that any algorithm caring for the buffer status
has minimized the rebuffering time and that the HAS reaction is
effective in reducing the rebuffering time in different channel con-
ditions.

Number of bitrate changes versus rebuffering time: The rela-
tionship between the number of bitrate changes and the rebuffer-
ing time is shown in Fig. 7. We cannot observe a definite relation
between them for all players, but we can see that DASH-IF and
Bitmovin players take a large range in both metrics compared to
other players.

m

E 60 DASH-IF T

S DASH-Google m

o 50}t BITMOVIN

[0} NETFLIX %

%) YOUTUBE

= 40 b VIMEO

Q

E 30t

[} +

£ 20

= iy

(] +

3; 10 [§+ + N +
+ *

g s % + iy N N N

¢ 0 i

0 20 40 60 80
Number of bitrate changes

100 120

Fig. 7. The relation between the number of bitrate changes and the rebuffering
time is shown.

Table 2

Startup delay measured by two users
(unit: seconds). We set the band-
width, network delay, loss rate to 3
Mbps, 0 msec, 0%.

User 1 User 2
DASH-IF 218 2.24
DASH-Google 4.95 4.80
Bitmovin 3.38 3.46
Netflix 7.76 7.68
YouTube 175 1.76
Vimeo 1.54 147

Startup delay: Table 2 shows the startup delay measured by
two users for different HAS players with 3072 Kbps bandwidth and
no RTT/packet loss setting. We repeat the measurement 20 times

I. Ayad et al./Computer Networks 133 (2018) 90-103 97

4500
4000
3500 r
3000
2500 r
2000 f
1500
1000

500

Bandwidth (Kbps)

0 L L L L L
0 100 200 300 400 500 600
Time (Seconds)

Fig. 8. The variation of bandwidth set for the dynamic bandwidth scenario is
shown.

for each player and average the results. We can observe that the
values are highly correlated between users, and different players
show significantly different values: while Vimeo has a startup de-
lay around 1.5 seconds, that of Netflix is over 7.5 seconds. We pre-
sume this variation is due to the difference in the main service tar-
gets of players. The Netflix player maintains long-term stability of
the video playout by having enough buffered video before it starts
to play because it mostly services videos with long play time. On
the other hand, Vimeo player puts higher weight on quick start
of play since it mostly services videos with short play time. Other
players come between these two extremes.

5. Advanced Scenarios

In this section, we test three advanced experiment scenarios:
dynamic bandwidth, background traffic, and multiple players sce-
narios.

5.1. Experimental Settings

For the dynamic bandwidth scenario, we set the bandwidth
as shown in Fig. 8. We change the bandwidth every 90 seconds
to see how HAS players adapt to a bandwidth variation. For the
background traffic scenario, we set the background TCP traffic us-
ing the iperf traffic generator as shown in Fig. 10. This setting
is to test how HAS players operate when the number of back-
ground TCP flows is varied between 1, 2, and 3. In multiple play-
ers scenario, we observe how players operate in a scenario where
multiple adaptive streaming players share a network bottleneck
and compete for available bandwidth, as in [6] with up-to-date
standard-based players and commercial streaming players. We test
two types of scenarios: the homogeneous scenario in which every
client node runs the same HAS players and the heterogeneous sce-
nario in which every client node runs different HAS players. We
run the experiments for each scenario five times and present the
average values for the performance metrics.

5.2. Impact of Dynamic Bandwidth

The result of dynamic bandwidth scenario is shown in Fig. 9.
DASH-IF client switches between high bitrates and low bitrates
frequently, but it follows the bandwidth variation roughly in bi-
trate selection (Fig. 9a). It maintained a stable buffer length in this
experiment but exhibited rebuffering times of 31.0 and 35.8 sec-
onds in 2 of the 5 experiment runs. DASH-Google client (Fig. 9b)
very closely estimates the network bandwidth to the bandwidth
set for the experiment. However, it sometimes overestimates the
bandwidth due to the buffer effect, e.g., during the period between

460 and 480 seconds, and alternates between different bitrates
within a short period of time. Despite the overestimation of the
bandwidth, DASH-Google player did not trigger a rebuffering. Bit-
movin player (Fig. 9c) follows the bandwidth variation most closely
among all players, but it changes the bitrate very frequently due to
the buffer effect in bandwidth estimation. Bitmovin player shows
a rebuffering time of 10.7 seconds and exhibits a rebuffering time
larger than zero in all the other 4 experiment runs. Netflix player
(Fig. 9d) is somewhat insensitive to the bandwidth variation. It
does not change the bitrate according to the bandwidth change,
except during the initial phase. We cannot know the detailed rea-
son for this since the source code of the adaptation algorithm
is not accessible, but we presume that Netflix player prioritizes
the stability of the bitrate selection over the adaptability to the
bandwidth variation. Netflix player also maintains a much higher
level of buffer length than other players, excluding YouTube, which
shows a similar level of buffer length. YouTube player (Fig. 9e) is
more insensitive to the bandwidth variation than Netflix player. In
addition to the prioritization on stability in bitrate selection of Net-
flix player, we found that YouTube player considers the resolution
of the screen and does not select bitrates higher than the bitrate
that the screen can display. Vimeo player (Fig. 9f) adapts to the
bandwidth variation very stably. However, this player chooses the
bitrate in an excessively conservative way: it chooses a much lower
bitrate than the available bandwidth. As a result, the buffer length
is stable throughout the duration of the experiment.

5.3. Impact of Background Traffic

The result of background traffic scenario is illustrated in Fig. 11.
Similar to the result of dynamic bandwidth scenario, DASH-IF
player switches between high bitrates and low bitrates frequently
(Fig. 11a). It shows a rebuffering time of 19.0 seconds during the
period from 535 to 570 seconds due to an excessively large bi-
trate selection. DASH-Google client (Fig. 11b) actively selects a bi-
trate to adapt to the varying throughput due to the different num-
ber of flows as times goes. It triggers rebuffering for 2.1 seconds.
Bitmovin player (Fig. 11c) changes the bitrate most frequently, as
in dynamic bandwidth scenario. In addition, its buffer is not sta-
ble and exhibits a rebuffering time of 19.4 seconds. Netflix player
(Fig. 11d) maintains a relatively large bitrate and stable buffer
length. However, it takes a long time (around 100 seconds) to
reach a stable state in the initial phase. YouTube player (Fig. 11e),
again, exhibits invariant bitrate selection and stable buffer length
as in dynamic bandwidth scenario. Vimeo player (Fig. 11f) adapts
to the bandwidth variation very stably as in dynamic bandwidth
scenario. However, it also chooses the bitrate very conservatively
and, as a result, maintains stable buffer load throughout the dura-
tion of the experiment.

5.4. Impact of Multiple Players

The results of the multiple homogeneous players scenarios for
6 tested players are shown in Table 3. The average bitrates of
DASH-Google and YouTube are the largest, while that of Vimeo
is the smallest. We presume the different sets of bitrates avail-
able for each player affected this result. However, as pointed out in
Section 4, the QUIC protocol used by YouTube and the adaptation
algorithm of DASH-Google, which follows the available bandwidth
closely, are expected to have affected the high average bitrate. The
Vimeo player’s conservative bitrate selection is confirmed in this
experiment again. Overall, the number of bitrate changes and re-
buffering times are larger than previous experiments. Even the
players that showed the most stable behaviors, such as Netflix,
YouTube, and Vimeo players, change bitrate much more than in

98

5000

25 5000

I. Ayad et al./Computer Networks 133 (2018) 90-103

25 5000

25

averageThroughput globalFastBandwidth Throughput
Throughput globalSlowBandwidth Bil
Bitrate Throughput
Buffer length Bitrate
4000 - : ; 120 4000 - Buffer length 4 20 4000 |- 20
o o 0
k] kel k]
2 2 2
3000 3 3000 115 8 3000 - 15 8
2 a 2 a 2 aQ
) £) E=1) | £
4 g 4 g 4 i H g
2000 E 2000 10 g 2000 10 E
£ £ £
5 5 5
@ @ @
1000 1000 5 1000 5
0 i . . " . 0 0 : i i . 0 0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (Seconds) Time (Seconds) Time (Seconds)
(a) DASH-IF player. (b) DASH-Google player. (c) Bitmovin player.
5000 250 5000 250 5000 25
Throughput Throughput Throughput
Bitrate Bitrate Bitrate
Bufferlength Buffer length
4000 1 200 4000 - 1 200 4000 4 20
> w w
k] k] kel
s s S
3000 - 1150 g 3000 1150 g 3000 115 8
2 aQ 2 o 2 @
) %) %’) %’
= g~ § §
2000 - 4 100 + 2000 [4 100 2000 1 10
£ £ 2
5 5 5
@ @ @
1000 1 50 1000 - 1 50 1000 h 5
0 . " i : . 0 0 | i i . 0 0 . h . 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time (Seconds)

(d) Netflix player.

Time (Seconds)

(e) YouTube player.

Time (Seconds)

(f) Vimeo player.

Fig. 9. Results of dynamic bandwidth scenario. We illustrate the variations of throughput, bitrate, buffer length, and other internal variables according to the player. We vary
only the bandwidth according to Fig. 8, and fix the network delay and packet loss rate to 0 msec, 0%, respectively.

[Flow T —— Flow2 Flow 3 x|

200 300 400
Time (Seconds)

0 100 500 600

Fig. 10. The initiation and termination times of 3 background traffic for the back-
ground traffic scenario is shown.

previous experiments and sometimes trigger rebuffering. We pre-
sume that the distinct traffic characteristics of HAS players, such as
repeated ON-OFF periods, make the available bandwidth for each
player variable and difficult to determine a stable bitrate in com-
parison to previous scenarios (which include only one HAS player
for each experiment).

Finally, the results of the multiple heterogeneous players sce-
narios with three DASH standard-based clients of DASH-IF, DASH-
Google, Bitmovin, and three commercial streaming players of Net-
flix, YouTube, and Vimeo are also shown in Table 3. We can see
that the different adaptation algorithms of different players result
in significant differences in each performance metric. DASH-Google
player chooses the lowest bitrate but experiences low number of

bitrate changes and no rebuffering. Bitmovin player takes the high-
est bitrate among three contending players, but it experiences the
highest number of bitrate changes and also long rebuffering times.
YouTube player selects the highest bitrate among three contending
players, but it does not experience bitrate change or rebuffering.
From this, we can observe that QUIC protocol is very aggressive
when contending with other TCP flows and not responsive to con-
gestion as much as other TCP flows. Vimeo player experiences a
long rebuffering time and large number of bitrate changes despite
its low bitrate selection.

6. Enhancing the Accuracy of DASH’s Bandwidth Estimation

As we discovered from the experiments in Section 4, the band-
width estimation algorithms of the HAS clients sometimes over-
estimate the available bandwidth. This overestimation, in turn, re-
sults in the selection of much higher bitrate than the bandwidth.
To solve this vicious cycle in an efficient way, we devised a sta-
tistical method that eliminates the throughput information that is
affected by the buffer effect as in Algorithm 4 . By not consid-
ering the outliers from the throughput data in the calculation of
the bandwidth available, the method predicts the bandwidth more
precisely.

To check whether the proposed algorithm mitigates the buffer
effect, we test the original DASH-Google client and a modified
DASH-Google client containing our algorithm with the 1024 Kbps
bandwidth limitation. The results are shown in Figs. 12 and 13. As
shown in Fig. 12, the bandwidth estimation values (globalFastBand-
width and globalSlowBandwidth) of original DASH-Google player
sometimes become significantly large due to buffer effect, e.g., at
373, 457, and 587 seconds. The throughput sample values are so
large that even if a moving average is used for the calculation

I. Ayad et al./Computer Networks 133 (2018) 90-103

5000 30 5000 = 30
averageThroughput globalFastBandwidth
Throughput globalSlowBandwidth
Bitrate 25 Throughput 25
L Buffer length L Bitrate 7]
4000 . 4000 Buffer length .
))
J 2] 2
20 g 20 8
3000 F o) 3000 ol
« H L 4 . [
Y £ g 15 £ &
4 5 ¥ 5 x
2000 8 2000 8
g 0 &
=3 =1
o o
1000 | 1000 5
0 . A . " 0 0 A . . . i 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (Seconds) Time (Seconds)
(a) DASH-IF player. (b) DASH-Google player.
5000 200 5000 200
Throughput Throughput
Bitrate Bitrate
Buffer length Buffer length
4000 - 4000 -
1150 & 1 150 >
=] el
2 e
3 3
3000 [o) 3000 o)
1] @ 123 @ 123
s 1100 £ & 4100 £ §
4 254 =34
2000 ~ 2@ 2000 2
o 5]
£ =
5 5
15 9 45 @
1000 1000 -
[
0 0 0 | i i 1 . 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time (Seconds)

(d) Netflix player.

Time (Seconds)

(e) YouTube player.

5000

4000

3000

2000

1000

5000

4000

3000

2000 +

1000

99
30
Throughput
Bitrate -
I Buffer length 25
m
el
20 §
(5]
I 19
Q
15 £
j=3
=4
I o
J] 10 &
I 3
i 3]
il : 5
m J Ll
. . | . . 0
0 100 200 300 400 500 600
Time (Seconds)
(¢) Bitmovin player.
30
Throughput
Bitrate
I Buffer length 1 25
m
el
7 20 §
Q
L
115 £
2
o
110 &
]
[3]
L
B =N
i ; ; i 0
0 100 200 300 400 500 600

Time (Seconds)

(f) Vimeo player.

Fig. 11. Results of the background traffic scenario. We illustrate the variations of throughput, bitrate, buffer length, and other internal variables according to the player. We
set the bandwidth, network delay and packet loss rate to 3 Mbps, 0 msec, 0%, respectively.

Algorithm 4: Bandwidth estimation method for eliminating
the buffer effect.

S; < the moving average for the deviation of the throughput
from the bandwidth estimation in ith iteration

B; < the bandwidth estimation of ith iteration

o < the exponential moving average coefficient for
bandwidth estimation

B < the exponential moving average coefficient for
throughput deviation S;

k < the parameter for giving tolerance to the variation of the
bandwidth

bw; < the bandwidth sample in iteration i

n < the number of bandwidth samples that exceed the
variation range consecutively

y < the number of bandwidth samples that we consider as
actual bandwidth increase if they exceeds the variation range
consecutively

for each iteration i do

if bW,' > Bi*] + k- Si*] then

Ln=n+1
else
Ln:O

if bw; <B;_{+k-S;_; or n >y then
LBI‘ZC('B,;]-F(‘I—Q)'bWi

Si=B-Si_1+ (1 - B)|B; — bw;]
else

L Bi =B 4

Si=Si1

1600 16
1400 | | , 14
1200 F 412
w
: ' H i i °
1000 |, Ao . : d houq 100§
x .. ‘) PRIt]| A o
j0)
2 Q
g 800 | 8 £
4 2
2
600 (- 6 g
=1
o
400 4
globalFastBandwidth |
globalSlowBandwidth |
200 Throughput 12
Bitrate |
Buffer length |
0 ; T . . 0
0 100 200 300 400 500 600

Time (Seconds)

Fig. 12. The variations of throughput, bandwidth estimation variables, buffer
amount, and bitrate for original DASH-Google player with 1024 Kbps bandwidth
limitation are shown. The network delay, packet loss rate are set to 0 msec, 0%.

of bandwidth estimation variables, the bandwidth estimation is
severely distorted. Due to this phenomenon, the bitrates are se-
lected incorrectly; much higher bitrates than the available band-
width are selected, and the bitrates vary wildly. On the other hand,
in the case of modified DASH-Google (Fig. 13), the estimated band-
width values are not affected by instant increases of the through-
put sample value and stably approach the assigned bandwidth.
This results in the stable bitrate selection. To further inspect the ef-
fect of Algorithm 4, we repeated the dynamic bandwidth scenario
in Section 5.2 with the modified DASH-Google client. We observed
that the modified DASH-Google client selects the bitrates closely to

100 I. Ayad et al./Computer Networks 133 (2018) 90-103

Table 3
Results of multiple player scenarios. The bandwidth is set to 4 Mbps, and network delay and packet loss rate are set to 0 msec and 0% respectively.
Scenario Type Client Number Average bitrate (Kbps) =~ Number of bitrate changes Average buffer length ~ Rebuffering time (Seconds)
Homogeneous 1 (DASH-IF) 756.81 432 8.46 18.09
2 (DASH-IF) 767.05 45.0 8.58 10.99
3 (DASH-IF) 772.95 410 8.38 19.88
4 (DASH-IF) 764.96 456 8.77 8.64
Total average 765.44 43.7 8.55 14.40
Homogeneous 1 (DASH-Google) 1059.57 31.6 13.22 0
2 (DASH-Google) ~ 1230.61 28.6 13.79 0
3 (DASH-Google) 1262.36 22.4 13.91 0
4 (DASH-Google) ~ 1101.27 29.8 13.48 0
Total average 1163.45 281 13.60 0
Homogeneous 1 (Bitmovin) 880.50 93.2 6.26 60.00
2 (Bitmovin) 835.97 934 7.60 45.68
3 (Bitmovin) 895.43 91.0 5.78 98.02
4 (Bitmovin) 913.78 96.2 6.94 29.14
Total average 881.42 93.4 6.65 58.21
Homogeneous 1 (Netflix) 665.80 26.8 113.14 0
2 (Netflix) 676.64 19.6 135.83 0
3 (Netflix) 710.42 204 128.39 0.60
4 (Netflix) 716.20 15.0 146.26 0
Total average 692.27 204 130.90 0.15
Homogeneous 1 (YouTube) 1004.50 6.0 93.91 37.16
2 (YouTube) 1055.88 5.6 95.25 20.17
3 (YouTube) 1275.00 0.8 128.12 0
4 (YouTube) 1154.57 4.8 100.91 22.63
Total average 1122.49 43 104.55 19.99
Homogeneous 1 (Vimeo) 496.20 21.0 17.83 12.54
2 (Vimeo) 460.29 15.4 18.60 0
3 (Vimeo) 441.81 22.4 18.07 0
4 (Vimeo) 364.83 15.8 13.26 16.80
Total average 440.79 18.6 16.94 733
Heterogeneous 1 (DASH-IF) 1168.08 12.8 943 4.89
2 (DASH-Google) 864.61 204 13.93 0
3 (Bitmovin) 1521.99 87.0 9.93 434
Total average 1184.90 40.0 11.09 3.07
Heterogeneous 1 (Netflix) 1206.00 16.2 124.76 0
2 (YouTube) 1347.00 0 148.72 0
3 (Vimeo) 543.04 26.4 15.83 27.71
Total average 1032.01 14.2 96.44 9.23
1600 16 length, adaptability to the bandwidth variations, fairness among
1400 1 I flows, startup delay, etc. One of the factors that affects these
differences is the major target of the service. The commercial
1200 | 412 streaming players tend to change the bitrate more conserva-
B tively than general DASH standard-based players. The players
1000 [110 ¢
g L EEAE 3 that service mostly short videos, such as Vimeo, tend to main-
& sool ls % tain shorter buffer length than the players that service mostly
< 3 long videos, such as Netflix. We will be able to obtain higher
600 | 16 & user satisfaction if we customize the bitrate adaptation accord-
400 . ® ing to the users’ preferences or video type/length.
globalF astBandwidth + Bandwidth estimation: In Section 4, we observe that the band-
globalSlowBandwidth
200 Throughput 12 width estimation is highly inaccurate in some scenarios due
o Buffer length _ ‘ ‘ 0 to the buffer effect. We may utilize a cross-layer approach

0 100 200 300 400 500 600
Time (Seconds)

Fig. 13. The variations of throughput, bandwidth estimation variables, buffer
amount, and bitrate for modified DASH-Google player with 1024 Kbps bandwidth
limitation are shown. The network delay, packet loss rate are set to 0 msec, 0%.

the bandwidth variation without over-estimation of the bandwidth
during the time period between around 460 and 475 seconds (re-
sults are not shown to save the space).

7. Key Observations and Suggestions

+ Customization of rate adaptation according to the service
target: Through various experiments shown in previous sec-
tions, we observed there are significant differences among play-
ers in terms of bitrate adaptation. They differ in target buffer

in which the HAS player can access the transport layer for
throughput information to obtain better bandwidth estimation
(e.g., using TCP_INFO socket information, which allows applica-
tions to access TCP connection information such as transmit-
ted bytes, received bytes, TCP state, and congestion window).
We can also use a statistical method in which the through-
put values affected by the buffer effect are eliminated from
the calculation of the bandwidth estimation, as we suggested
in Section 6.

Fairness: The TCP mechanism provides the throughput fairness
among competing flows. However, the bitrate selections are un-
fair in many competition scenarios even with the homogeneous
algorithms, due to the native characteristics of HAS (such as
the ON-OFF periods pointed out in [6]). The UDP-based trans-
port of YouTube player has a negative impact on fairness. Dur-
ing the competition with Netflix and Vimeo players, YouTube

I. Ayad et al./Computer Networks 133 (2018) 90-103 101

player obtains the highest constant bitrate, and the other play-
ers suffer from low, variable bitrates, or rebuffering (especially
the Vimeo player). To solve this problem, we suggest deriv-
ing a basic, minimal mechanism for maintaining the fairness
among different players and applying it to every player (e.g.,
the maximum bandwidth increase rate in one step, minimum
time for a bitrate change—abrupt increase in rate or frequent
bitrate change makes other players hard to estimate the band-
width available).

8. Limitations and Future Work

In our experiments, we vary the network environment in var-
ious ways but confine our experiment environment to the wired
network rather than the mobile network. Our focus is on investi-
gating how players behave in different settings within the wired
network. Experiments with other HAS players in mobile networks
were performed in [46-49], and [50]. We leave the experiment in
mobile network with our tested players to our future work. In ad-
dition to the mobile network environment, there are various fac-
tors that can affect the operation of HAS players, including the
video content, video encoding method such as bitrate set, codec,
segment duration, variable bit rate/constant bit rate, and video rate
time-variability. Some of these issues were addressed in previous
work [48,51,52], but we leave thorough investigation of these is-
sues with up-to-date DASH based players and popular streaming
service players as our future work.

9. Conclusion

In this paper, we perform an in-depth evaluation of practi-
cal streaming players developed under the MPEG DASH standard
and popular commercial streaming players. Specifically, we pro-
vide the detailed operation of rate adaptation algorithms in sev-
eral HAS/DASH clients, using code level analysis. In addition, we
conduct extensive experiments of these clients on our testbed and
make several observations on the performances of 6 representa-
tive DASH-based players and popular commercial streaming play-
ers. They include significantly different behaviors in bitrate adap-
tation due to differences in the type of services (e.g., commercial
players tend to change the bitrate more conservatively, and the
players serving mostly short videos tend to maintain a small buffer
length) and the non-optimal bit-rate selection due to frequent
over-estimation of the bandwidth. In particular, we identified the
cause of one of the player mis-behaviors, which we termed “buffer
effect,” and provided a statistical method to mitigate the effect.
Based on the observations, we suggested several guidelines for im-
proving the rate adaptation, bandwidth estimation, and fairness of
HAS/DASH players.

Acknowledgments

This work was partially supported by NSF grant CNS-1525435.
Special thanks go to Shyam Sundar Ramamoorthy and Brett Shouse
for their help in the implementation of the testbed and many help-
ful discussions and comments on the paper.

References

[1] Cisco, Cisco visual networking index: Forecast and methodology, 2014-2019,
CISCO White paper (2015).

[2] MPEG DASH standard., http://dashif.org/mpeg-dash.

[3] L. Sodagar, The mpeg-dash standard for multimedia streaming over the inter-
net, IEEE MultiMedia (4) (2011) 62-67.

[4] S. Akhshabi, A.C. Begen, C. Dovrolis, An experimental evaluation of rate-adap-
tation algorithms in adaptive streaming over http, in: Proceedings of the sec-
ond annual ACM conference on Multimedia systems, ACM, 2011, pp. 157-168.

[5] C. Miiller, S. Lederer, C. Timmerer, An evaluation of dynamic adaptive stream-
ing over http in vehicular environments, in: Proceedings of the 4th Workshop
on Mobile Video, ACM, 2012, pp. 37-42.

[6] S. Akhshabi, L. Anantakrishnan, A.C. Begen, C. Dovrolis, What happens when
http adaptive streaming players compete for bandwidth? in: Proceedings of
the 22nd international workshop on Network and Operating System Support
for Digital Audio and Video, ACM, 2012, pp. 9-14.

[7] WebDriver., https://www.w3.org/TR/webdriver/.

[8] Adobe HTTP Dynamic Streaming., http://www.adobe.com/products/
hds-dynamic-streaming.html.

[9] Apple HTTP Live Streaming., https://developer.apple.com/streaming.

[10] Microsoft Smooth Streaming., http://www.iis.net/downloads/microsoft/
smooth-streaming.

[11] Wowza, Understanding streaming protocols and output file formats, 2014
(accessed August 11, 2014), (http://www.wowza.com/forums/content.php?
621-Understanding- streaming- protocols-andoutput-file-formats).

[12] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, P. Tran-Gia, A survey on
quality of experience of http adaptive streaming, IEEE Communications Sur-
veys & Tutorials 17 (1) (2015) 469-492.

[13] A. Zabrovskiy, E. Kuzmin, E. Petrov, C. Timmerer, C. Mueller, Advise: Adap-
tive video streaming evaluation framework for the automated testing of media
players, in: Proceedings of the 8th ACM on Multimedia Systems Conference,
ACM, 2017, pp. 217-220.

[14] D. Stohr, A. Frommgen, A. Rizk, Where are the sweet spots? a systematic ap-
proach to reproducible dash player comparisons (2017).

[15]]. Jiang, V. Sekar, H. Zhang, Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive, in: ACM CoNEXT, 2012.

[16] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A.C. Begen, D. Oran, Probe and adapt:
Rate adaptation for http video streaming at scale, Selected Areas in Communi-
cations, IEEE Journal on 32 (4) (2014) 719-733.

[17] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, M. Watson, A buffer-based
approach to rate adaptation: Evidence from a large video streaming ser-
vice, in: Proceedings of the 2014 ACM conference on SIGCOMM, ACM, 2014,
pp. 187-198.

[18] X. Yin, A. Jindal, V. Sekar, B. Sinopoli, A control-theoretic approach for dynamic
adaptive video streaming over http, in: Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication, in: SIGCOMM 15,
ACM, New York, NY, USA, 2015, pp. 325-338, doi:10.1145/2785956.2787486.

[19] P. Wisniewski, A. Beben, .M. Batalla, P. Krawiec, On delimiting video rebuffer-
ing for stream-switching adaptive applications, in: 2015 IEEE International
Conference on Communications (ICC), IEEE, 2015, pp. 6867-6873.

[20] K. Spiteri, R. Urgaonkar, R.K. Sitaraman, Bola: Near-optimal bitrate adaptation
for online videos, in: IEEE INFOCOM 2016 - The 35th Annual IEEE Interna-
tional Conference on Computer Communications, 2016, pp. 1-9, doi:10.1109/
INFOCOM.2016.7524428.

[21] A. Seema, L. Schwoebel, T. Shah, J. Morgan, M. Reisslein, Wvsnp-dash:
Name-based segmented video streaming, IEEE Transactions on Broadcasting 61
(3) (2015) 346-355.

[22] A. Detti, B. Ricci, N. Blefari-Melazzi, Supporting mobile applications with in-
formation centric networking: the case of p2plive adaptive video streaming,
in: Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking, ACM, 2013a, pp. 35-36.

[23] A. Detti, B. Ricci, N. Blefari-Melazzi, Peer-to-peer live adaptive video streaming
for information centric cellular networks, in: Personal Indoor and Mobile Radio
Communications (PIMRC), 2013 IEEE 24th International Symposium on, IEEE,
2013b, pp. 3583-3588.

[24] W. Song, D. Tjondronegoro, M. Docherty, Saving bitrate vs. pleasing users:
where is the break-even point in mobile video quality? in: Proceedings of the
19th ACM international conference on Multimedia, ACM, 2011, pp. 403-412.

[25] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, H. Zhang, A quest
for an internet video quality-of-experience metric, in: Proceedings of the 11th
ACM workshop on hot topics in networks, ACM, 2012, pp. 97-102.

[26] N. Cranley, P. Perry, L. Murphy, User perception of adapting video quality, In-
ternational Journal of Human-Computer Studies 64 (8) (2006) 637-647.

[27] S.S. Krishnan, RK. Sitaraman, Video stream quality impacts viewer behavior:
inferring causality using quasi-experimental designs, IEEE/ACM Transactions
on Networking 21 (6) (2013) 2001-2014.

[28] DASH-264 JavaScript Reference Client., http://dashif.org/reference/players/
javascript/index.html.

[29] MPEG-DASH | Media Source demo., http://dash-mse-test.appspot.com/.

[30] Bitmovin Adaptive Streaming Player for MPEG-DASH & HLS., https://github.
com/bitmovin/bitdash-demo.

[31] netem, (accessed November 19, 2015), (http://www.linuxfoundation.org/
collaborate/workgroups/networking/netem).

[32] tc - show | manipulate traffic control settings, (accessed November 19, 2015),
(http://linux.die.net/man/8/tc).

[33] Netflix - Watch TV Shows Online, Watch Movies Online., https://www.netflix.
com/.

[34] YouTube., https://www.youtube.com/.

[35] Vimeo: Watch, upload and share HD and 4k videos with no ad., https://vimeo.
com/.

[36] Microsoft, Bigbcukbunny, 2008 (accessed December, 2014), (http:
|[bigbuckbunny.org/index.php/download).

[37] Setup Adaptive Bitrate Streaming with DASH and HLS., https://bitmovin.com/
tutorials/setup-adaptive-bitrate-streaming-dash-hls/.

http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0001
http://dashif.org/mpeg-dash
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0005
https://www.w3.org/TR/webdriver/
http://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.wowza.com/forums/content.php?621-Understanding-streaming-protocols-andoutput-file-formats
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0007
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0008
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0009
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0010
https://doi.org/10.1145/2785956.2787486
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0012
https://doi.org/10.1109/INFOCOM.2016.7524428
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0020
http://dashif.org/reference/players/javascript/index.html
http://dash-mse-test.appspot.com/
https://github.com/bitmovin/bitdash-demo
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://linux.die.net/man/8/tc
https://www.netflix.com/
https://www.youtube.com/
https://vimeo.com/
http://bigbuckbunny.org/index.php/download
https://bitmovin.com/tutorials/setup-adaptive-bitrate-streaming-dash-hls/

102 I. Ayad et al./Computer Networks 133 (2018) 90-103

[38] ffmpeg, Compiling or installing ffmpeg on ubuntu, (accessed January 15, 2015),
(http://www.ffmpeg.org).

[39] Mp4box, (accessed March,15 2015), (http://gpac.wp.mines-telecom.fr/mp4box).

[40] Generate HAR and Browser NavigationTimingAPI data headlessly with Chrome
and Firefox., https://github.com/parasdahal/speedprofile.

[41] The netfilter.org “libnetfilter_queue” project., http://www.netfilter.org/projects/
libnetfilter_queue/.

[42] Super Netflix., https://chrome.google.com/webstore/detail /super-netflix/
aioencjhbaolepcoappllicjebblphoc?subflicks.

[43] Selenium WebDriver., http://www.seleniumhgq.org/projects/webdriver/.

[44] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett,]. Iyengar, et al., The quic transport protocol: Design and
internet-scale deployment, in: Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, ACM, 2017, pp. 183-196.

[45] G. Carlucci, L. De Cicco, S. Mascolo, Http over udp: an experimental investiga-
tion of quic, in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, ACM, 2015, pp. 609-614.

[46] S. Mekki, S. Valentin, Anticipatory quality adaptation for mobile streaming:
Fluent video by channel prediction, in: World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM), 2015 IEEE 16th International Symposium on a,
IEEE, 2015, pp. 1-3.

[47] S. Colonnese, S. Russo, F. Cuomo, T. Melodia, I. Rubin, Timely delivery versus
bandwidth allocation for dash-based video streaming over Ite, [EEE Communi-
cations Letters 20 (3) (2016) 586-589.

[48] L. Rubin, S. Colonnese, F. Cuomo, F. Calanca, T. Melodia, Mobile http-based
streaming using flexible Ite base station control, in: World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2015 IEEE 16th International Sympo-
sium on a, IEEE, 2015, pp. 1-9.

[49] S. Cicalo, N. Changuel, R. Miller, B. Sayadi, V. Tralli, Quality-fair http adaptive
streaming over Ite network, in: 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 714-718.

[50] L. De Cicco, S. Mascolo, C.T. Abdallah, An experimental evaluation of akamai
adaptive video streaming over hsdpa networks, in: 2011 IEEE International
Symposium on Computer-Aided Control System Design (CACSD), IEEE, 2011,
pp. 13-18.

[51] V. Adzic, H. Kalva, B. Furht, Optimizing video encoding for adaptive streaming
over http, IEEE Transactions on Consumer Electronics 58 (2) (2012).

[52] L. Toni, R. Aparicio-Pardo, G. Simon, A. Blanc, P. Frossard, Optimal set of video
representations in adaptive streaming, in: Proceedings of the 5th ACM Multi-
media Systems Conference, ACM, 2014, pp. 271-282.

http://www.ffmpeg.org
http://gpac.wp.mines-telecom.fr/mp4box
https://github.com/parasdahal/speedprofile
http://www.netfilter.org/projects/libnetfilter_queue/
https://chrome.google.com/webstore/detail/super-netflix/aioencjhbaolepcoappllicjebblphoc?subflicks
http://www.seleniumhq.org/projects/webdriver/
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0022
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0024
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0025
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0026
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029
http://refhub.elsevier.com/S1389-1286(18)30028-8/sbref0029

I. Ayad et al./Computer Networks 133 (2018) 90-103 103

Mr. Ibrahim Ayad Ibrahim Ayad is a PhD student in the Interdisciplinary Telecom Program, College of Engineering and Applied Science, University
of Colorado at Boulder. He has over 15 years with Cisco Systems where he has architected, designed and deployed complex networking solutions
in the service provider and enterprise voice and video domains. His current position is a senior systems engineer at Cisco, where he performed
in-depth and high-level technical presentations for customers, partners and prospects on existing Ciscos cloud computing and hosted collaboration
services offers. Actively participating as a specialist on Unified Communications, provides consultative support in Collaboration architecture to
partner’s and Cisco systems engineers. His research interests encompass Networking architecture, Internet protocol stack, in particular TCP/UDP
reliable transport, Video coding, and HTTP adaptive streaming.

Dr. Youngbin Im Youngbin Im is a postdoctoral researcher in the Department of Computer Science at University of Colorado Boulder. He received
his B.S. and Ph.D. degrees in computer science and engineering from Seoul National University in 2006 and 2014, respectively. During his graduate
program, he was a visiting student at Princeton University. His research interest includes mobile data offloading, next-generation Internet, multi-
core based content router, video rate adaptation.

Dr. Eric Keller Eric Keller is an Assistant Professor in the Electrical, Computer, and Energy Engineering Department at the University of Colorado,
Boulder. He received his PhD in 2011 from Princeton University. His research involves designing and building secure and reliable networked systems
using a cross-layer approach that draws from networking, operating systems, distributed systems, and computer architecture. Recent research
has focused on enabling and capitalizing on a more dynamic and programmable computing and network infrastructure, via such technologies as
virtualization, software-defined networking, and the movement toward cloud based services.

Dr. Sangtae Ha Sangtae Ha is an Assistant Professor in the Department of Computer Science at the University of Colorado at Boulder. He received
his Ph.D. in Computer Science from North Carolina State University. He co-founded the Princeton EDGE Lab as its first Associate Director in 2009
and led its research team as an Associate Research Scholar at Princeton University from 2010 to 2013. He is a co-founder and the founding CTO/VP
Engineering of DataMi, a startup company on mobile networks, and is a technical consultant to a few startups. His research focuses on building
and deploying practical network systems. He is an IEEE Senior Member and serves as an Associate Editor for IEEE Internet of Things Journal. He
received the INFORMS ISS Design Science Award in 2014.

	A Practical Evaluation of Rate Adaptation Algorithms in HTTP-based Adaptive Streaming
	1 Introduction
	2 Related Work
	3 Experimental Framework
	3.1 Metrics and Setup Description
	3.2 Goals / Objectives
	3.3 Experiment and Testbed Setup
	3.4 Tested HAS Players
	3.4.1 Open Source DASH Players
	3.4.2 Commercial Streaming Players

	4 Standalone Scenarios
	4.1 Experimental Settings
	4.2 Results

	5 Advanced Scenarios
	5.1 Experimental Settings
	5.2 Impact of Dynamic Bandwidth
	5.3 Impact of Background Traffic
	5.4 Impact of Multiple Players

	6 Enhancing the Accuracy of DASH’s Bandwidth Estimation
	7 Key Observations and Suggestions
	8 Limitations and Future Work
	9 Conclusion
	 Acknowledgments
	 References

