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Abstract—We present the design, implementation, and preliminary evaluation of our Adaptive Educational System (AES): the
Mobile Integrated and Individualized Course (MIIC). MIIC is a platform for personalized course delivery which integrates lecture
videos, text, assessments, and social learning into a mobile native app, and collects clickstream-level behavioral measurements
about each student as they interact with the learning modes in the app. These measurements can subsequently be used to
update the student’s user model, which can in turn be used to determine the content adaptation for the user. Recruiting students
from one of our Massive Open Online Courses (MOOCs), we have conducted two preliminary trials with MIIC, in which we
found, for example, that the majority of students (70%) preferred MIIC overall to a standard, one-size-fits-all (OSFA) presentation
of the same material, that the mean level of engagement — when quantified as the number of pages and objects viewed —
was statistically higher (by 72% and 59%, respectively) among students using MIIC than among those using OSFA, and that
the integrated learning features were generally favorable among the students (e.g., 87% and 85% found the videos and text
emphasis helpful, respectively), with the exception of the social learning aspect (with only a slight majority finding that useful).
Motivated by these initial findings, we discuss a number of next steps we are pursuing, including modifications to our platform,
additional user trials from other courses, and more advanced data analytics for user modeling.

Index Terms—Personalized Learning, Adaptive Educational Systems, Individualization, Distance Learning, MOOC

1 INTRODUCTION AND MOTIVATION

UCCESSIVE innovations in distance learning have
S stretched the feasible length of separation between
students in a given course. The most recent of these
has been Massive Open Online Courses (MOOCs)
[44], which have created global connectivity among
users for learning. Platforms like Coursera, edX, and
Udacity have become the subject of controversy as
people explore the future of higher education [35].

There are now over a dozen MOOC platforms.
Among them are a number of operational differences,
but common across all are support for open content
consumption, lecture videos with quizzes, homework
assignments, and scalable student discussion forums,
as well as the following two, salient features: very
large enrollments, but very low completion rates.

To illustrate the last two points, take Fig. 1, which
shows empirical enrollment-completion data pairs for
a variety of MOOCs offered on Coursera, edX, and
Udacity [31]. Completion rate here is defined as the
fraction of students who received a certificate at the
end of the course. As one can see, it is rare to see more
than 13% of students complete a MOOC.
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These high attrition rates have been the focus of
a number of recent studies (e.g., [12], [40], [42]). For
MOQOCs geared towards student enjoyment, some
argue that completion is not the right measure of effi-
cacy, since users may choose to survey or only focus
on a subset of the material [33]. For MOOCs that are
created by instructors to target serious students who
are looking to obtain a certificate, some argue that
large drop-off rates represent a fundamental debates
about the long-term prospects of MOOC [22], [56].

We identify a number of reasons why these MOOC
drop-off rates may occur [11]:

o Asynchronous learning. There is no common
timetable or location, which makes it difficult for
students to interact except through forums.

o Small teacher-to-student ratios. The number of stu-
dents is orders of magnitude larger than the
teaching staff. As a proxy, our statistical analysis
in [12] showed an average ratio of 0.0035 over
73 courses, considering those who posted on the
forums at least once.

o Diverse demographics. Coming from all over the
world and from all different age groups, students
have a diverse set of learning backgrounds and
goals.

The presence of these challenges, among others,
makes difficult for a standard, one-size-fits-all (OSFA)
course to be effective in a massively scaled learning
scenario. In a traditional classroom, each student will
have slightly different needs, necessitating the instruc-



N
o

w
a

o o

o

Completion Rate (%)
P - g n w

o

. . .
e * N el e e
L)

0 25 50 75 100 125 150 175 200 225 250
Enroliment (Thousands)

Fig. 1: Empirical enrollment-completion data for 58 MOOCs
offering certificates [31] shows that completion rates (i.e., the
fraction of students receiving certificates) rarely exceed 13%.

tor to differentiate learning for each student individ-
ually [3]. This process is not scalable to an orders of
magnitude larger student body further complicated
by heterogeneity and asynchrony.

Our MOOC experience. We have instructed two
MOOCs over five offerings. Our undergraduate
course Networks: Friends, Money, and Bytes (N:FMB)
was one of the six piloted by Princeton on Coursera
in 2012. Through a pre-course survey in N:FMB, we
found that: about half of the students were 30 years
or older; one quarter did not have a college degree;
only 30% were from the US, with 35% from Europe
and Canada, and 35% elsewhere; and one third of the
students were from backgrounds other than science,
math, or engineering. Further, through interacting
with the students in the forums, we found that some
were deterred because of their lack of knowledge or
interest in mathematics, while others were tackling
advanced material, emphasizing the diverse learning
backgrounds of the student body.

To cater to those deterred, we created a second
course, Networks Illustrated: Principles Without Calcu-
lus (NI), which explains the underlying concepts in
N:FMB but with much simpler mathematics. In NI,
many students complained that the material was too
elementary, which caused some to lose interest, fur-
ther emphasizing the diverse learning interests.
Basis of MIIC. This work presents an Adaptive Edu-
cational System (AES) built to help overcome some of
these challenges with MOOC. The basis and rationale
behind this system is as follows:

First, AES have been shown to improve learn-
ing outcomes over that attainable from OSFA course
delivery in traditional classrooms [2]. These sys-
tems generally define and continually update a user
model (UM) based on a student’s interaction with
the AES [16], which is used to assist student naviga-
tion through the material (i.e., navigation adaptation)
and/or to modify the presentation of the material
itself (i.e., presentation adaptation). UM-based adap-
tation has the potential to improve the quality of
distance education because of its ability to individ-
ualize learning to each student’s needs and interests,
especially in a setting as diverse as MOOC [7], [29].

Moreover, the inclusion of various modes of learn-

ing — such as video, audio, text, and graphics — into a
course has been shown to be an effective instructional
style (e.g., [45], [48]) because it gives students the
ability to choose which of the modes they prefer, and
it provides increased opportunity for cognitive rein-
forcement from different perspectives. We therefore
believe it is beneficial for an AES to contain multiple
learning modes, especially in distance learning where
student needs are diverse. In particular, video lectures
are important in e-learning because they most closely
replicate the instructional style of a traditional lecture,
with narration from the teacher, sequences of objects,
and visuals presented to the student to help create
a more personal learning environment [32], [57]. An-
other benefit of integrated learning modes is that an
AES can use information collected as students interact
with each mode to update the UM.

Finally, there has been a large increase in the pop-
ularity of tablet computers recently, with global sales
increasing by 50% in 2013 [28]. Studies have indicated
that students may prefer learning on mobile devices
than on PCs [20], [37]. Moreover, there have been a
number of recent studies which have shown mobile
device users to prefer apps to browsers for computing
tasks (e.g., [8], [54]); in particular, [8] found this to be
true in the context of accessing course resources. AES
development in native app format has a number of
advantages in terms of device-side storage, document
pre-loading, and a wider range of sensors (i.e., camera
and accelerometer) to detect user interaction.
Overview of MIIC. Our AES is called the Mobile
Integrated and Individualized Course (MIIC), and
possesses the properties outlined above. In particular:

o It integrates video, text, assessment, and social
learning into a single platform, and is thereby
built for full course delivery.

o It captures clickstream-level behavioral measure-
ments about each student as they interact with
the course material, including video-watching
and pageview events, which can subsequently be
used for adaptation.

o Itis delivered as a native mobile app, as opposed
to through a (mobile) web browser.

Organization. Section 2 will present a discussion
and comparison to related AES. Then, Section 3 will
describe the individualization framework for MIIC.
Here, we will first outline our design process (Section
3.1), and then present the MIIC individualization used
for the initial user trials as a special case (Section 3.2).
Section 4 will overview the MIIC system architecture.
Then, Section 5 will discuss the two preliminary user
trials that have been conducted with MIIC using
participants from MOOC, followed by next steps we
have planned. We conclude our work in Section 6.

2 RELATED WORK

Development of AES dates back to the early 1990s.
Brusilovsky presented a taxonomy and summary in



1996 [16]. We will discuss some of the well-cited AES
that have been developed since then, and direct the
reader to [2], [15], [16] for more details.

ELM-ART [52] is a web-based AES which sup-
ports adaptive navigation through link annotation.
The UM in ELM-ART is a multi-layered overlay, and
is updated based on both knowledge inference from
assessments and explicit user input. MIIC is different
in this regard because it also supports presentation
adaptation, and because it does not allow users to
directly modify the UM.

AHA! [24] is another web-based adaptive system,
where each page consists of a sequence of HTML
fragments. Similar to MIIC, AHA! supports both
navigation (through link annotation and hiding) and
presentation (through conditional inclusion of frag-
ments) adaptation. The UM in AHA! is based entirely
on a user’s browsing behavior, with fragments and
pages being marked as desired or not based on pages
visited previously. MIIC instead uses assessments to
infer user knowledge of and/or tendency towards
learning concepts, with correlations with behavioral
measurements to potentially enhance these inferences.

TANGOW [18] also features navigation (through
link disabling and adaptive link sorting) and presenta-
tion adaptation, but differently than AHA!, the HTML
pages are generated dynamically at runtime from con-
tent fragments. As a result, the author must specify
the sequencing of subtasks as well as the features of
each fragment. One drawback to this approach (i.e.,
having no path generation, see Section 3) may be that
the author must label each separate fragment [36],
rather than starting with static content blocks and tag-
ging the modifications. TANGOW allows storage of
quiz scores and visited pages, leaving it to the author
to decide if/how these will be used for adaptation.

CoMoLE [37] is a Java-based AES that was built
to support mobile delivery through a web browser,
as opposed to MIIC which supports delivery through
native app. It supports adaptive navigation by gener-
ating a list of recommended next activities, using (1)
a rule-based filter which checks the context, features,
and requirements of the activity against the UM,
and (2) a Markovian filter which analyzes learning
paths followed by similar users/groups. MIIC is not
currently focused on UM updates based on similar
users.

Learning styles. Many AES have been designed to
support adaptation based on a user’s inferred learning
styles (LS) [15]:

WHURLE [13] is an XML-based adaptive learning
environment on which different user models can be
instantiated. It supports adaptive presentation, by
removing chunks of lessons that are not valid for the
current user, but not adaptive navigation. Omission of
a particular UM makes WHURLE a flexible system,
but may add burden on the designer who must
specify it [36]. The authors have evaluated WHURLE

using two different dimensions of the Felder-Soloman
Inventory of Learning Styles [27]: WHURLE-HM [13],
with a UM based on the visual-verbal LS dimension,
and DEUS [14], based instead on the sequential-global
dimension, and surprisingly found no significant ef-
fect in favor of LS adaptation.

LS-Plan [36] is a web-based AES with a UM based
on four of the Felder and Silverman Learning and
Teaching Style Dimensions [26]. This system supports
adaptive navigation, and adapts by sequencing/re-
sequencing the current learning path as opposed to
MIIC which plans it one step at a time (see Section 3).
The UM in LS-Plan is based heavily on assessment
performance, but also uses lower and upper-bounds
on the total time spent in a module to infer whether
a user was on-task or not. Through experimentation,
the authors found a statistically significant increase in
the knowledge acquired from the adaptive modality.
Novelty of MIIC. AES that support mobile delivery
via web browser have been developed [37], but none
to our knowledge do so via native app. Also, MIIC
presents multiple learning modes to users simultane-
ously. We are not aware of an AES with lecture videos,
likely because most have been focused on acting as
supplements to traditional classrooms [49]. Finally,
MIIC collects more detailed behavior about user in-
teraction than we have seen for other AES, including
clickstream events of their pageviews (verified with
device sensors) and video-watching behavior, because
these can be used for individualization too.

3 MIIC INDIVIDUALIZATION FRAMEWORK

In this section, we will first present the general process
we have been following in designing our AES. In do-
ing so, we will discuss the options we have considered
for each of its four modules. Subsequently, Section
3.2 will detail the individualization framework imple-
mented for user trials as a special case.

3.1 AES Design Process

Our AES design process consists of specifying four
modules: inputs, user modeling, path generation, and
path selection, as illustrated in Fig. 2.

3.1.1 Inputs

This refers to the types of inputs that the AES collects.
We identify four explicit types: assessment points,
viewing behavior, social learning network (SLN) [11],
and annotations. Additionally, pre-processing can be
performed to give a richer and/or more useful set
of inputs for the modeling stage. In particular, perfor-
mance prediction [34] can be used to estimate a user’s
score on assessments she did not take.



3.1.2 User modeling

This module consists of machine learning techniques
that map the inputs to update a low-dimensional
user model (UM), which contains information about
a student’s current state of learning [16]. We refer
to the dimensions of the UM as the learning features
of the course, which guide the content adaptation
based on user knowledge and/or similarity to them.
The feature set F is typically author-specified; they
can represent any of user “goals, knowledge, back-
ground, hyperspace experience, and preferences” [16].
We briefly discuss three possibilities:

Learning styles. The author could designate the fea-
tures to be different LS preferences. These could be
a subset of Felder and Silverman’s Learning and
Teaching Style Dimensions: sensing-intuitive, visual-
verbal, sequential-global, and active-reflective [26].
There are a number of other theories as well, such as
those proposed by Dunn and Dunn [25] and Honey
and Mumford [30].

Acquired knowledge. The author could also interpret
features as dimensions of existing knowledge, cov-
ering key areas of the course. These would serve to
track the knowledge acquired by the user while in-
teracting with the course material, and could be very
general in nature (e.g., “mathematical”, “conceptual”),
or more specific, even to the point of simply having
one feature for each segment.

Domain background. Additionally, features could mea-
sure user background in the content domain, to in-
dicate whether or not she satisfies prerequisites for
certain sections of material.

One way to update the UM is through a score
tracking system, where each answer choice in an
assessment is associated with a number of points (pos-
sibly binary) for one or more features. This approach
is taken in numerous developed systems because tests
are the “most reliable source of evidence that a user
has learned a concept” [52].

Beyond this, there are a number of algorithms
one could use to map the inputs to the UM. For
example, matrix factorization (MF), a type of model-
based collaborative filtering [51], is a technique that
has been applied to educational data to extract latent
feature sets [5], [34]. In its simplest form, MF models
each user ¢ and quiz j in terms of a feature vector of
dimension K, say u;, q; € RE, and seeks to minimize
the prediction error u} q;—s;; of the actual score s;; by
optimizing the feature vectors across user-quiz pairs
in a training set. Letting the matrix Q = [q,], [34] also
gives a method for decomposing Q into a product
of human-generated tags and concept-tag relations to
enhance interpretability of the latent space.

One way to incorporate inputs besides assessments
is through a large regression/classification problem
that will compute correlations among them. An ex-
ample is factorization machines (FM) [43], where each
user-quiz pair is represented as a vector, say x* € RP

Inputs Path Selection

A. Assessment points

B. Score predictions

C. Viewing behavior

D. Social learning network
E. Annotations
\_ J \_ J

Modeling A ( Path Generation )

A. Point tracking
B. Collaborative filtering

A. Static
B. Step by step
C. Sequencing/Re-Seq

A. Completely manual

. B. Hybrid
C. Correlation v
. e C. Completely automated
D. Regression/classification
. D. None
E. Clustering
\_ J \_ J

Fig. 2: Our AES design process. MIIC implements the subset
of the options shown in bold.

for pair k. The set of dimensions D contains all the
possible attributes of the pair, which can take binary
values, or real values, such as the percentage of the
video the user completed. FM has been applied to
educational data previously [50].

3.1.3 Path generation

The purpose of this module is to specify each of the
learning paths a user may follow as a result of the
adaptation logic. This logic will compare the UM to
the properties of each path and select the one that best
suits the user. We say that each learning path consists
of a sequence of segments; one can think of a segment
(seg) as the smallest unit of knowledge presented
before/after an assessment. A segment may also have
a number of different versions (vers), corresponding to
alternate presentations of the content. As such, we let
(s,v) refer to ver v of seg s, but we will only use
the ordered pair when it is necessary to distinguish
between versions. Then, S, = ((s,v)1,., ($,0)n)u
denotes user u’s learning path, which is the sequence
of segment-versions (seg-vers) that she has visited.

For illustration, we can view a course as an author-
defined network, where the nodes are segments (with
different versions) and the links are potential transi-
tions between them. In Fig. 3(a), we show an example
with 7 segments, where a link from s to ¢ means that
it is possible to transition to ¢ once having finished
with s. Shown is an example learning path S, =
(1,(2,1),(4,2),7). It is important to note the differ-
ence here between how navigation and presentation
adaptation [16] are handled in our framework, which
occur at the link level (e.g., direct guidance or anno-
tation) and content level (e.g., collapsing/expanding
or text emphasis), respectively. Navigation between
segments encapsulates the former, while the choice of
different versions refers to the latter.

Hence, it is necessary to (i) segment the content,
(ii) generate the set S of learning paths, and (iii)
specify the properties of the paths in terms of the
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Fig. 3: Diagrams to illustrate the definitions of learning path, seg-vers, and navigational and content adaptation.

learning features . For the trials in Section 5, we each
perform of these manually, as will be explained. Other
methods could automate a portion of this process for a
given course. For example, if an author has completed
(i), one could then recruit a set of users to interact
with the content, monitoring their satisfaction and
progress as they make their own adaptation decisions.
Based on the paths chosen by the users who learned
well, these actions could be hard-coded as paths for
future users with similar UMs, thereby specifying (ii)
and (iii). An alternative to these methods altogether
is to have no set paths at all, by having the sections
generate dynamically from content fragments based
on the current UM, as in TANGOW [18].

3.1.4 Path selection

The last module is the method to select the learning
path for each user based on the UM. In a static regime,
the path is fixed based on information acquired at
the beginning [13]. MIIC currently uses a step-by-step
approach where the next seg-ver is determined at the
end of the current one, so only the learning path up
to the current point is known. Another alternative
is sequencing/re-sequencing, as with LS-Plan [36],
where at any given point a user is assigned to an
end-to-end path, which will switch if another is found
more suitable to the current UM.

3.2

The current MIIC individualization framework con-
sists the subset of the AES design options bolded
in Fig. 2. We have implemented three components
that were tested through the user trials in Section
5: behavioral measurements, data analytics, and con-
tent/presentation adaptation. An extended data ana-
lytics algorithm, which is embedded in our system but
not yet tested through a trial, will be briefly discussed
in Section 5.4.!

Individualization for User Trials

1. Details of this extended algorithm are available online, in
Section 6 of our technical report [9].

3.2.1 Behavioral Measurements

As users interact with MIIC, their behavior is moni-
tored and subsequently uploaded to a server:
Viewing behavior. Viewing measurements are taken
for video and for pages as a whole. The Ul for the
different learning modes is shown in Fig. 4(a). The
current position of the video, and the tags of the
objects in the current page, are recorded with each
touchscreen interaction. The interaction recorder that
obtains these two types of viewing measurements will
be explained in Section 4.

Quiz responses. The questions in MIIC currently take
the form of radio-response multiple choice. Fig. 4(b)
shows the standard assessment view. Each time a user
answers a question, her response is recorded.

Notes and markings. MIIC allows the users to take
and share notes, as well as place bookmarks on read-
ing pages and in videos. Shown in Fig. 4(c) is the user
menu for video and text bookmarks, and in (d) is the
note sharing aspect: the user can select a note made
by another user and expand it to see it in full.

3.2.2 Data Analytics

For these trials, we took a simplistic approach to up-
dating the UM and restricted ourselves to analyzing
quiz responses, as is done by most other AES.
Learning features. Each segment s in a course is
associated with a set of learning features F;, which is
a subset of the features in F, as discussed in Section
3.1. The purpose of the assessments within s is to
test user proficiency with one or more of the features
f € F,. The content author will tag each segment with
its corresponding features.

Feature weights. Let ¢ € (), denote question ¢ in the
set of questions ()s for segment s. We refer to wys as
the weight of feature f € F, in question ¢. In general,
wqy can be any real number, and if feature f is not
present in ¢ then wyy = 0.

Assessment grade. Let ¢ € C; be answer choice ¢
within the set of choices for ¢, and let 7. be the (real-
valued) points associated with choice ¢ in question q.
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(a) Video, text, and select. (b) An assessment.

(c) Video/text bookmarks. (d) Social notes.

Fig. 4: Illustration of how the different learning modes are currently integrated into MIIC. In (a), we show video and
corresponding text, along with the ability to select text and add notes, perform external searches, and so on; in (b), an
assessment is presented to the user; in (c), the video and text bookmark menu is selected, and a bookmark icon is on the
page; and in (d), a note created by another user is selected on this user’s tablet.

Upon completion of segment s, the points awarded to
a student for feature f is mathematically given by:

I,y = quf Zﬂ'cxic )

qEQs ceCy

)

where i, is 1 if choice ¢ was selected and 0 otherwise.
UM update. Updating the user model here consists
of aggregating (1) and storing the results for each
feature. Letting p} denote the current assessment per-
formance of the user, then at the end of segment s,
the UM is updated as follows:

p§ < pf + sy Vf. ()

3.2.3 Content/Presentation Adaptation

In the rest of this section we will explain how MIIC
supports both navigation and presentation adapta-
tion, referring to Fig. 3(b) for terminology.

Adaptive navigation. Once the user has finished
working in a segment, MIIC generates a recommen-
dation as to which she should visit next. In the current
MIIC implementation, these recommendations are not
shown to the user; rather, they are used by the system
to determine the next seg-ver to fetch. More generally,
MIIC can implement a form adaptive ordering, where
the potential next segments are ordered based on the
current UM and shown to the user.

Each link specified by the author will have con-
straints on the current assessment grades (i.e., the pf).
Letting F,; denote the set of features used to constrain
the transition between s and ¢, for each feature f € F,;
the author will specify a lower (o, 5¢) and upper (8y,s¢)
bound requiring p§ € [a, 8]5,s,* for feasibility of the

2. This implies that p‘; must be between oy s; and By .

the transition to ¢. In Fig. 3(b), these constraints are
combined into a set Cl;.

Considering all potential transitions from s, we
obtain the set of recommended next segments as

Rs = {t : p(j” S [a76]f,st Vf S ]:st}-3 (3)

To determine the recommended next segment p,, we
consider three cases on R,:

e R, = 0: This means that no transition is valid for
the current UM. To avoid this problem, for each
s the author will designate one segment d; to be
the default transition from s. In this case, ps = d.

e |Rs| = 1: Here, there is exactly one valid next
segment ¢, and ps =t accordingly.

e |Rs| > 1: The author should avoid this by choos-
ing mutually exclusive constraints. If it arises,
then the first valid seg u is chosen and ps = u.

In general, ensuring that |R,| = 1 might be diffi-

cult for an author, depending on the complexity of
the employed adaptation structure. Constraint based
validation techniques for AES have been developed in
the past [38], and we are currently investigating this
for MIIC. For the initial trials in Section 5, we had no
issues ensuring valid constraints manually.

Adaptive presentation. For each potential next seg-
ment, the most suitable version must be selected. The
logic for this is similar to (3): if F; ) is the set of
features used to define constraints for version v of
segment ¢, then the constraint for ¢ to be feasible is
that p§ € [, Bl t,0) Vf € F,0)- For a given segment,
each version can have different properties in terms of
content presentation, through the application of the
following MIIC functions:

3. This implies that ¢ is valid if p% ¢ € [o, B f,s¢ for each feature f
constraining the transition from s to t.
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Fig. 5: Architectural description of the current MIIC implementation. In (a), the key components coded and established
for the user device and backend server are shown. In (b), high-level device-server interaction logic is shown, which is
used to store user data, update the UM, fetch the next segment, and render it on the device.

Replacing. Based on the UM, specific pieces of content
can be replaced with others. For instance, one version
may contain more images and less text than another.
Collapsing/expanding. Content can also be collapsed or
expanded. For struggling students this can be useful
to elaborate on explanation details/revision and hide
advanced material. For advanced students, elaborate
explanations can be hidden.

Emphasizing. Content pertaining to learning features
that a user possesses strengths/weaknesses in can
be emphasized. For text, this includes modifying the
font/color or highlighting. This helps a student to fo-
cus on these areas for reinforcement or improvement.

4 MIIC SYSTEM IMPLEMENTATION
4.1

Users access MIIC through a tablet computer. The
main components residing on the device-side are
illustrated at the top of Fig. 5(a).

DPCM engine. Individualization must handle the
process of dynamic content modification. Existing
HTML rendering engines in mobile apps often rely on
JavaScript, which, being an interpreted programming
language, is too slow and inefficient for dynamic
modification at this scale [23]. Issues with JavaScript
become more severe in the case of platforms (such as
iOS) that, for security reasons, disallow the use of Just-
In-Time (JIT) compilation in third party applications.
This increases the execution time of JavaScript.

The Dynamic Presentation and Content Modifica-
tion (DPCM) engine in MIIC is instead a modified
and optimized version of WebCore/WebKit. We have
extended WebCore with a C++ API to allow for native
access to the Document Object Model (DOM) as well
as to the layout engine for the different types of
content modifications that MIIC performs (see Section
3.2.3). Additionally, we improved the SVG rendering
library, which is used to display math equations. Due
to the size of WebCore (roughly 10M lines) as well as

Device-side Implementation

dependencies both within the library itself and with
other frameworks, we spent a few months with this.
Interaction recorder (IR). The IR monitors user inter-
action with the video player and with the content on
each page as a whole. For the video player, the time
interval between every two successive VCR actions
- play, pause, jump, end of video, or close app - is
measured. The UNIX Epoch time, starting position,
and interval duration are recorded in each case.

As for the page content, the time the user has spent
viewing a page is recorded each time she switches the
page or closes the app. We implemented a method to
help check whether the user is viewing a page a given
point in time. These take the form of four Boolean
variables based on device sensors:

o Last touch (TSp,.): If a touchscreen interaction has

occurred within the past Pr minutes, this is true.

o Face detection (FD): If the person’s face is detected
in front of the device through the camera, this is
true. The device pulls key frames from a contin-
uous video stream to determine this.

o Device angled (DA): If the accelerometer detects
that the device is held on an angle, this is true.
This determines whether the user has the tablet
flat on a surface by checking if the acceleration
in any of the three dimensions of the standard
Cartesian coordinate system differs from Earth’s
gravitational acceleration.

o Device movement (DMp,,): If the accelerometer has
detected device movement in the past Pp min-
utes, this is true. This checks if the user is holding
the tablet.

Based on these, we define another Boolean variable
viewing page (VP) that is updated every 5 sec. The
following are the cases in which VP is true:

e TS5 A (FD VDM V DA): If the user has touched the
screen in the last 5 min, this is a good indication
that she is focusing on the page. In addition,
we require one other variable to be true for
more continuous evidence; for instance, if the



user walked away from the tablet, this condition
would become false in quicker than 5 min. We
choose to not lower Pr in case the user is reading
without touching the screen.

o FDA (DM; VDA): Even if the the time since the last
touch has exceeded 5 min, the user may still be
viewing the page. What we require then is that
they are in front of the tablet and that either of the
accelerometer variables are true; otherwise, it is
likely they are sitting with the tablet but engaging
in off-task behavior.

Once the user switches the page, the UNIX Epoch
time and counter duration are recorded as a pair.
The counter duration measures time spent with any
learning mode on the page, since VP will be true in
all cases. The set of text objects (i.e., each paragraph,
image, equation, and heading) in the portion of the
viewport that is currently visible is also recorded, to
determine whether the page size was changed.

This IR logic was verified empirically prior to user

trials. It is important to include it for data analytics, in
order to reduce uncertainty associated with whether
a user is currently on-task or not, as will be seen in
Section 5 when quantifying engagement in terms of
page views. Distinguishing between student intents
(i.e., their actual behavior) and their actions (i.e., their
apparent behavior) is currently an active area of re-
search for intelligent tutoring systems [19].
Course files. The text and image content of the course,
as well as questions and answer choices, are stored
on the tablet in an EPUB container that conforms to
the most recent specification (3.0 at the time of this
writing). Each segment has its own universally unique
identifier (UUID) and is written as a separate XHTML
file, and every containing object is assigned a unique
identifier as well. Different versions are created dy-
namically through tag logic to collapse/expand, re-
place, or highlight certain objects.

4.2 Server-side Implementation

A server running Apache is currently used for the
backend. The main components are shown at the
bottom of Fig. 5(a). To communicate with the server,
devices require an Internet connection, and submit
data using a REST API that sends HTTP POSTs with
JSON objects as the body. Server side code was written
in Python with the Django framework and JavaScript.
Adaptation engine. This engine has three func-
tions: update the UM, determine the recommended
next segment, and determine the potential next seg-
vers. This corresponds to data analytics and con-
tent/presentation adaptation described in Section 3.
Video streaming. This implements HTTP streaming
to the the native video player on the device.

The three main elements shown in server storage
are implemented as tables in an SQLite database (DB).

The logic that is executed once the user has com-
pleted the current segment is outlined in Fig. 5(b).

First, the behavioral data collected with the IR is
uploaded to the user data DB on the server, and any
annotations made are uploaded to the user informa-
tion DB. Then, the adaptation engine is fed with this,
the UM, and the segment transition logic from the
course DB. It returns an updated UM, R, and the
possible seg-ver pairs.

Once the selection is made (currently done auto-
matically, but more generally could be driven by user
input), the next seg-ver is fed to the video streamer,
which will fetch the necessary video ID information
from the course database and begin streaming to
the device. Additionally, the annotation handling will
check the user information DB for any markings the
user has made in the segment previously, and will
look at the social network identifiers of her “friends”
(via Facebook) to check for shared notes. Finally, the
DPCM engine will render the content on the screen.

5 PRELIMINARY USER TRIALS

Using a prototype of MIIC as an iOS mobile app, we
conducted two initial trials in 2013. Our objective was
to evaluate MIIC among students in our MOOC.

5.1

We used material from our courses, N:-FMB and NI,
to convert two lectures to MIIC, one per trial. The
videos and assessments were taken from the respec-
tive courses, and the text from our books [10], [21].
In architecting the features and transition logic, we
set each MIIC lecture to present the most challenging
content possible for each student, constrained by both
her background knowledge in the prerequisite mathe-
matics and her acquired knowledge at a given instant.
An alternative would have been to set up these MIICs
as intelligent tutors to bring everyone to the same
level of understanding, by adapting the navigation
through/around prerequisites. But without offering
an incentive for participation, we decided to adapt to
what students would want to learn. We did, however,
structure each MIIC such that the key concepts were
explained along any of the learning paths.
Course structure. Fig. 6 shows the structure we em-
ployed for MIIC in both of the trials. Beginning with
two separate books and courses, we decided to split
navigation into two paths: segments at the top (2, 4,
and 6) tended to contain content from N:FMB and
those on the bottom (3, 5, and 7) from NI, while
the first segment was a combination and the last a
summary. The number of versions shown for each
segment here are specific to the second trial, though
similar to the ones in the first.
User modeling. For both trials, multiple choice ques-
tions were presented at the end of the segments. The
3 — 5 questions occurring at the end of each of segs
1 — 5 determined how the UM was updated. Each

Authoring Process
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Fig. 6: Course structure for the MIIC employed in our
student trials.

Lectre al[x ) Lecnre [ ]

(a) Linear algebra

(b) Basic algebra

Fig. 7: Illustration of a page in two different segs for MIIC
in the first trial. (a) is a from seg 2, which shows a more
in-depth treatment of the subject. (b) is from seg 3, which
only uses basic algebra to explain the fundamentals.

was tagged with up to three learning features: con-
cepts (C), mathematics (M), and examples (E); hence
F ={C, M, E}. From (1) in Section 3, we specified the
wq s as binary numbers, and the 7. as integers between
0 and 3. For brevity, we omit the exact values for these
for each trial, but note that seg 1 covered concepts C
and M, segs 2 and 3 covered C, M, and E, and segs
4 and 5 covered M and FE in both cases.

Hence, the navigation decision in each trial upon
completing seg 1 was dependent on p¢ and p§,.
In subsequent segments, each version corresponded
to content being emphasized (with color) or col-
lapsed/expanded. Text tagged as corresponding to
mathematics or concepts were colored depending on
the current feature performance: green for high, and
red for low. Additionally, in segs 4 and 5, intermediate
steps in numerical examples were hidden depending
on p$, and p%. And in segs 6 and 7, subsections
corresponding to advanced material were expanded
depending on the performance on all features.

The results of this modeling process, in terms of
which learning paths were traversed, will be given for
the second trial. The one-size-fits-all (OSFA) content
in each trial consisted of content on the top navigation
path in Fig. 6, with no version modifications.

5.2 Trial 1: Student Response
The first trial was conducted in February 2013.
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Fig. 8: Student rating of overall experience with MIIC, on a
five point scale. Over 80% responded “good” or “excellent.”

Research questions. The purpose of this study was
to investigate two questions: (RQ1) Which features
of MIIC are favorable among students, and which
may need improvement? (RQ2) How does student
experience compare between MIIC and OSFA?
Content. The content used here was a lecture on
Google PageRank. For MIIC, Fig. 7 shows an example
of the difference in content shown on two different
learning paths; referring to Fig. 6, 7a is from seg 2
and contains more advanced linear algebra, while 7b
is from seg 3 and explains the same features but only
using basic algebra. OSFA in this trial was chosen
to be a standard PDF version of the material, the
implications of which will be discussed further below.
Procedure. We announced the trial for iPad users
concurrent with the release of the lecture on Coursera.
Since this was the first time the software and its back-
end were used by students, we wanted to ensure the
initial backend infrastructure could readily support
the trial scale, so we restricted participation to the
first 100 students who responded to our first come
first serve email. These users received a download
link to both the MIIC (.ipa) and OSFA (.pdf) files. In
order to reduce bias in the sequence of presentation,
we divided them into two groups: one was instructed
to use MIIC and then OSFA, and the other was to do
the opposite.

Questionnaire. Upon completion of these tasks, each
participant was asked to fill out a 14-question multiple
choice questionnaire. 5 questions asked about the per-
ceived usefulness of the learning modes and overall
experience with MIIC, for RQ1, and another 4 asked
about the MIIC vs. OSFA comparison, for RQ2.

47 students filled out the questionnaire, and the 43
who indicated that they used both MIIC and OSFA are
the focus of our analysis. This is much smaller than
the MOOC enrollments cited in Section 1, because
we limited participation by design. These sample
sizes are on the same order as the size of traditional
classrooms on which many AES have been tested [2].
Also, since OSFA was a PDF document in this trial,
strictly speaking, the comparisons made here for RQ2
are between delivery with mobile, integration, and in-
dividualization versus delivery lacking these features.



For this reason, we attempted to target most of the
questions towards a single aspect of our design.

5.2.1 Results: MIIC features (RQ1)

Lecture videos. One question asked about the useful-
ness of the integrated lecture videos. 68% of students
found this very useful, 19% found it somewhat useful,
and 13% found it not useful.

External search. Another asked about the usefulness
of selecting text and searching it on external plat-
forms. 36% and 38% found this very and somewhat
useful, while the other 25% found it not useful.
Social notes. Another asked about the usefulness of
being able to take and share notes. Only 23% and
28% found this somewhat and very useful, respec-
tively, while the remaining 49% found it not useful.
One possible reason for this is the limited time the
participants had to interact in the trial.

Text emphasis. Another question asked how well the
text emphasis helped to direct users to important
concepts. 53% found this very helpful, 32% found it
somewhat helpful, and only 15% found it not helpful.
Overall experience. Finally, one question asked how
the student would rate the overall experience with
MIIC, on a five-level Likert scale [36]. The distribution
is shown in Fig. 8: 38 (81%) responded excellent or
good, and 9 (19%) responded moderate or poor.

5.2.2 Results: Comparing MIIC with OSFA (RQ2)

For each of these questions, participants were able
to select (a) preference of MIIC, (b) preference of
OSFA, or (c) indifference. A trinomial test described
in [6] was used to determine whether there was a
statistically significant difference for each question,
using the number of positive (in favor of MIIC), neu-
tral (no preference), and negative (in favor of OSFA)
responses. The four questions and their results, with
significance evaluated at confidence levels of a = 0.05
and 0.01, are as follows:

Difficult material. One of the questions asked which
of the two contained excessive difficult material. 23
(53%) felt that each was fine, another 15 (35%) felt
OSFA had too much, and 5 (12%) felt MIIC had too
much. The p-value on this test was 0.025, significant
in favor of MIIC at a = 0.05.

Simple material. Another question asked which con-
tained too much simple material. 29 (67%) felt each
was fine, another 9 (21%) felt OSFA had too much,
and 5 (11%) felt MIIC had too much. The p-value of
0.285 was not significant.

Better understanding. Another asked which of the
two led to better understanding of the material. 26
(61%) were for MIIC, compared to only 10 (24%) for

4. Another approach may have been to make OSFA a multimedia
eBook (i.e.,, MIIC without individualization), as is done in the
second trial, though it is not clear whether students would prefer
an eBook to a textbook (see e.g., [55]).
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OSFA. The p-value of 0.008 was significant in favor
of MIIC.

Prefer overall. The last asked which of the two the
user preferred overall. 30 (70%) were in favor of MIIC,
compared to only 9 (21%) for OSFA. The p-value was
less than 0.001, significant in favor of MIIC.

5.3 Trial 2: Student Engagement

The second trial was conducted in September 2013.
Research questions. The purpose of this study was to
investigate two more research questions: (RQ3) Which
learning paths do students of MIIC traverse as a result
of the user modeling process? (RQ4) Do students us-
ing MIIC have a higher level of engagement compared
with those using OSFA?

Procedure. Three points distinguish the procedure of
this trial from the first: (1) the content was Cellular
Power Control; (2) OSFA was given as an integrated
mobile app, making the only difference between MIIC
and OSFA the lack of adaptation; and (3) each partic-
ipant was only given either MIIC or OSFA, and was
unaware of which she received.

Endpoints for engagement. In general, engagement
is difficult to quantify, being defined as “the amount
of physical and psychological energy that the student
devotes to the academic experience” [4], [17]. In the
end, we chose total page count as the main endpoint
for engagement to investigate RQ4 (a similar endpoint
was chosen in [53]). The reason for focusing on pages
is two-fold, referring to the discussion in Section 4.1:
(1) the pagecount timer captures the total time spent
with any learning mode on the given page, and (2)
the IR logic helps reduce uncertainty in the recorded
times. The fact that the same measurement is used
for both MIIC and OSFA also makes the comparison
more fair. The reason for using total count rather
than time spent is that viewing for a longer time
is ambiguous; it could mean higher engagement or
more confusion. To account for differences arising
from users changing page size, we used total object
count a second endpoint.

5.3.1

We will first give an overview of the learning paths
traversed by the students, to give the direct results
of the user modeling process outlined in Section 5.1.
Here, we focus only on the users who were given
MIIC, since OSFA had only a single path.

Version encoding. Referring to Fig. 6, different seg-
ment numbers were assigned the binary encoding
given in Fig. 9 to describe the adaptive presentation.
Each bit in the second column is a variable specific to
the different sections:

Cempn and Mepmpn: These denote emphasis of concep-
tual and mathematical content, respectively. When set
to 1, the color is green, and 0 means it is red.

Results: Learning paths (RQ3)



Section(s) Version Encoding (Base 2)

2&3 (Cemph Memph)2

4 &5 (Mh,id Cemph Memph)Q
6 (OLea:p MR@JJp Cemph Memph)2
7 (SHezp OLezp Cemph Memph)2

Fig. 9: Binary encoding of the version numbers for different
sections in Figure 6.

Learning Path Frequency
(27 (11)2)5 (47 (000)2)7 (67 (1000)2) 1
(21 (11)2)7 (47 (111)2)> (61 (1010)2) 1
(27(11)2)5 (47(111)2)7 (67(1111)2) 1
(31 (00)2)7 (57 (000)2)> (71 (0000)2) 1
(37 (00)2)5 (57 (010)2)7 (77 (0010)2) 1
(3,(10)2), (5,(010)2), (7,(0010)2) 2
(37 (11)2)5 (57 (000)2)7 (77 (0010)2) 2
(3,(11)2), (5,(010)2), (7,(0010)2) 4
(37(11)2)5 (57 (011)2)7 (77(1111)2) 1

Fig. 10: Learning paths (omitting segs 1 and 8) among the
14 MIIC users who answered all the questions.

My},;q: This denotes hiding extra example steps. When
set to 1, they are hidden, and when 0 they are not.
OL¢zp, MReyp, and SHeyp: These denote expanding
the advanced material subsections “Open Loop Power
Control,” “Matrix Representation,” and “Soft Hand-
offs.”. When set to 1, they are expanded, and when 0
they are collapsed.

Note that the reason the version counts in Fig. 6 are

not 2% with = the number of version variables is that
some combinations are not possible.
Analysis. The 24 MIIC users who proceeded far
enough to answer the questions at the end of seg 1
are the subject of our analysis here. Of them, 7 (29%)
were navigated to seg 2 while 17 (71%) went to 3,
meaning that the majority of students received the less
difficult (NI) path. 14 (58%) completed all questions
on their respective paths, with a total of 9 distinct
learning paths out of the 74 possible considering all
combinations. These paths are shown in Fig. 10, along
with the number of users for each.

The encoded variables range from a student who
was navigated to the top path and had all variables
1 (third row) to a student who went to the bottom
and had all variables 0 (fourth row). This corresponds
to a range from the most to least advanced pre-
sentations possible, underscoring the heterogeneous
demographic of the participants. The most common
learning path was taken by four users (eighth row).
While they were initially proficient in both concepts
and math for their level (Ceppr, = Mempn = 1 in seg 3),
as they moved through, they remained so in concepts
(Cempn = 1 in segs 5 and 7) but began to struggle with
math (Mp;q = 0 in seg 5 and M¢ppn = 0 in segs 5 and
7). Additionally, no advanced material was shown to
them (SHezp = OLeyp = 0 in seg 7).

By including additional navigation paths in Fig. 6,
it may have been possible to split users who were
on the same initial paths further. This may have been
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Fig. 11: Distribution of the (a) pages and (b) objects accessed
by students in the OSFA and MIIC groups. The distribution
for MIIC is shifted to the right, indicating higher engage-
ment (with the exception of one outlier).

Total page count Total object count

p-value 0.009** 0.015*
95% CI (1.00, 8.00) (7.00, 57.00)
HLE 5.00 30.00

Fig. 12: p-values, 95% confidence interval (CI), and Hodges-
Lehmann estimate (HLE) of the difference between the MIIC
and OSFA groups for the distributions in Fig. 11(a) and (b),
respectively, using the Wilcoxon test.

beneficial for those 70% who were initially navigated
to seg 3. To investigate this, we considered the subset
of this 70% that were on the borderline of navigation
to seg 2 (roughly speaking, having achieved > 70% of
the required points). Only 5 of these 24 satisfied this
criteria, which is to small to make statistical claims
with, but it is surprising that of these 5, 3 completed
the lecture. The 60% finishing rate of this group is
roughly the same as the 58% rate of the 24 participants
as a whole. This means that there was no evidence
that having an additional navigation path for this
group would have helped their completion rate.

5.3.2 Results: Page and object count (RQ4)

Data handling. Since many users did not traverse far
into the lecture and a number of the entries consti-
tuted a short duration more in line with browsing
than studying, two filters were created: (1) an entry
in the database was only considered valid if the
elapsed time was at least 10 seconds; and (2) only
users who reached seg 2/3 were considered, since
these were the users who experienced the effect or
lack of adaptation. Combined with the IR logic, the
10 second cutoff was a second precaution taken to
discount entries most likely associated with off-task
browsing or skipping through the material. Including
it was seen to help discount a number of users with
this apparent behavior.

There were 44 users who satisfied these criteria: 25
in the MIIC group and 19 in the OSFA group. Fig.
11 gives boxplots of the two endpoints by group. In
(a), the mean (standard deviation) for MIIC is 10.76



(5.95) pages, compared to 6.26 (4.92) for OSFA; in (b),
these values are 74.12 (39.45) for MIIC compared to
46.68 (41.93) for OSFA. The distribution for MIIC is
visibly shifted to the right, suggesting a higher level
of engagement when quantified in terms of page and
object counts.
Analysis. Since Shapiro-Wilk tests [46] detected signif-
icant departures from normality, non-parametric tests
were preferred over the standard t-test. The Wilcoxon
rank sum test [47] is a nonparametric procedure which
is more sensitive to differences between central ten-
dencies than others; we therefore we employed this as
our primary method, with a continuity correction to
the discrete distribution of the test statistic. Using this
test, we computed (1) a two-sided p-value for testing
the null hypothesis of no difference, with significance
evaluated at o = 0.01 or o = 0.05, (2) a 95% confidence
interval (CI) estimate for the shift in location, and (3)
a Hodges-Lehmann estimate (HLE) of the shift; the
HLE is an estimate of the shift in location parameter
based on the Wilcoxon test.

The results are given in Fig. 12:
Significance testing. For pages, a p-value of 0.009 was
obtained, significant in favor of MIIC. For objects, the
p-value was slightly higher (0.015) but still significant.
Confidence interval. For pages, the difference be-
tween the means was between 1 and 8 with 95%
confidence. For objects, it was between 7 and 57.
Distribution shift. The HLE of the difference for
pages was 5, and 30 for objects. These shifts are
large when considering the maximum counts from
students in each case (23 pages, 153 objects). The
percent increase in mean from OSFA to MIIC was
71.8% for pages 58.8% for objects.

5.4 Discussion: Key Messages and Next Steps

In investigating these research questions, we found:

e MOOC students using MIIC tended to have
higher engagement than those using OSFA, when
quantified in terms of page counts.

o MOOC students responded favorably to most of
the features of MIIC (e.g., lecture videos and text
emphasis), but not to the social learning aspect.

e MOOC students favored course delivery via
MIIC to OSFA on a few dimensions, including
overall preference and better understanding.

As a result of this, and also of the various perceived

limitations identified for each trial, the following are
the next steps we have begun to explore:
Additional data analytics. First and foremost are
additional analytics. One way is to analyze the data
collected from each separate learning mode in MIIC
(rather than collectively, as is the case with total page
count), which can each serve as a different proxy
of engagement. We are planning additional trials to
obtain data for this.
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Another way is to implement more advanced tech-
niques for updating the user model based on data
collected from each learning mode, using the methods
outlined in Section 3.1. To this end, we will briefly
describe the user modeling algorithm that was not
tested in the preliminary trials but that is currently
implemented in MIIC,® since one of our immediate
next steps is to evaluate it. This algorithm relates a
user’s video behavior to her performance with a given
learning feature, which is accomplished by finding
and updating the Pearson correlation coefficient [39]
between performance on assessments the user has
completed and the time the user spent watching the
videos (which is one way to quantify watching behav-
ior) corresponding to these assessments for each fea-
ture. A composite performance measure, combining
quiz scores with the video-watching behavior scaled
by this correlation coefficient, is updated each time
a user completes a segment, and is in turn used to
determine the next seg-ver.

There are two perceived benefits of having these
two measures of performance. First is that perfor-
mance can be updated even if the user has chosen
to skip an assessment (i.e., by using the watching
behavior score), which will be particularly useful in a
situation like MOOC where quiz responses may only
be optional. Second is that with additional informa-
tion, the effect of the noise associated with guessing
and slipping (i.e., answering incorrectly when the user
actually knows the information) behavior (see e.g.,
[41] for a discussion) can be reduced. One of our
immediate action items is to evaluate these potential
benefits through additional trials.

Additional courses. These trials only include MOOC
users from our own courses. In order to evaluate it in
a more general setting, we are working with other
authors to transform their content to MIIC format
and run further trials. An example of this is with
instructors from our own non-profit online education
platform “3 Nights and Done” [1].

Additional metrics. In working with additional au-
thors, we will change our endpoints to reflect the
measure of efficacy in the given setting. In particular,
for a class with strict learning goals, we can treat
incremental performance as a primary endpoint [36].
Platform additions. We are working on extending the
social learning in MIIC to include discussion forums,
due to the poor user experience reported with the
social notes from the first trial. Also, we are extending
MIIC to other platforms besides iOS.

6 CONCLUSION

In this paper, we presented the design and prelimi-
nary evaluation of MIIC, an AES that delivers video,
text, assessment, and social learning to users through

5. For the formal description of this algorithm, the reader is
referred to Section 6 of our online technical report [9].



a mobile native app. MIIC collects behavioral mea-
surements about each user as they interact with the
course material, which can subsequently be used to
drive the adaptation engine. We presented the results
from our first two user trials with MIIC, which were
conducted by recruiting participants from MOOC,
and showed, for example, that these students tended
to have higher engagement (when quantified as page
and object counts) when using MIIC than when using
OSFA. We have also identified next steps that we have
begun to explore with MIIC, such as additional data
analytics, evaluating our currently implemented user
modeling algorithm, and testing with content from
authors in other fields.
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