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Abstract. The growing amount of traffic in mobile data networks is
causing concern for Internet service providers (ISPs), especially smaller
ISPs that need to lease expensive links to Tier 1 networks. Large amounts
of traffic in “peak” hours are of especial concern, since network capacity
must be provisioned to accommodate these peaks. In response, many
ISPs have begun trying to influence user behavior with pricing. Time-
dependent pricing (TDP) can help reduce peaks, since it allows ISPs to
charge higher prices during peak periods. We present results from the first
TDP trial with a commercial ISP. In addition to analyzing application-
specific mobile and WiFi traffic, we compare changes in user behavior due
to monthly data caps and time-dependent prices. We find that monthly
data caps tend to reduce usage, while TDP can increase usage as users
consume more data during discounted times. Moreover, unlike data caps,
TDP reduces the network’s peak-to-average usage ratio, lessening the
need for network over-provisioning and increasing ISP profit.

1 Introduction

Mobile data usage is growing at unprecedented rates, with Cisco estimating
that global mobile data traffic grew 81% in 2013 and projecting a compound an-
nual growth rate of 61% over the next five years [I]. This trend has significantly
increased ISPs’ capital expenses, as they must provision their network to accom-
modate peak usage during the day [3/16]. Smaller ISPs are particularly affected,
as their network capacity is limited by middle mile links to Tier 1 operators,
which are leased at rates based on peak usage [20]. Many ISPs are therefore
trying to reduce their peak mobile data traffic [I8I22]. In this paper, we focus
on the use of pricing as an incentive for users to reduce their peak usage.

Most U.S. ISPs charge fixed fees for limited monthly data caps. Yet data caps
may not effectively limit usage peaks, as users can remain under their caps by
using less data at off-peak times and not changing their peak-time usage. Time-
dependent pricing (TDP) allows the ISP to effectively target network peaks
by offering higher prices at those times, incentivizing users to consume data
at other times. Yet TDP’s effectiveness depends on users’ willingness to shift
their data usage in exchange for reduced prices, which can vary for different



users and applications: business users, for instance, might not wait to download
email attachments, but teenagers might wait to download video purchases [§].
To the best of our knowledge, there are no systematic studies of these price-delay
tolerances, and no works on TDP have yet accounted for the effect of displaying
usage statistics to users: showing users these statistics would make them more
aware of their usage and might affect their usage behavior. Such trials have also
focused only on university populations [21g].

In this paper, we present results from the first TDP trial with a commercial
ISP. We recruited 27 customers of a local U.S. ISP, dividing users into time-
independent pricing (TIP) and TDP groups. The TIP users used a data usage
monitoring application with their regular pricing plan. We show that this mon-
itoring induced them to reduce their usage below their monthly data caps, but
that they still had very high peak usage. The TDP users both monitored their
data usage and received time-dependent prices; we show that the prices induced
TDP users to increase their usage at discounted times. Thus, simple data caps do
not effectively reduce ISPs’ peak network usage, but TDP does. Our work makes
the following contributions:

— An analysis of the results of the first TDP trial with a commercial ISP,
including;:

— A study of temporal and per-app WiFi and cellular usage data.

— An analysis of the impact of data usage monitoring apps on cellular and
WiFi usage behavior.

— An evaluation of real customers’ price sensitivity and delay tolerance for
different applications.

— An examination of TDP’s cost benefits with empirical price sensitivity and
delay tolerance estimates.

In the next section, we give an overview of related work. We then describe
the trial structure and our analysis methodology in Section [3] We analyze users’
pre-trial data usage in Section {4| before presenting the trial results in Section
We conclude in Section [l

2 Related Work

Previous trials in a university setting demonstrated TDP’s effectiveness in chang-
ing mobile data usage patterns [8]. Others have suggested that data usage and
user responses to incentives depend on psychological [2] or socioeconomic [14]
factors. Another work on price elasticities for wireline broadband speeds consid-
ers a wider population [7]. These trials, however, do not analyze TDP’s effects
on different apps or account for the effect of simply displaying usage statistics to
users. We find that displaying usage statistics generally decreases usage volume,
but when combined with TDP can result in increased usage at low-price times.

Many studies have found a significant time-of-day pattern in cellular network
traffic [II]. Others have analyzed LTE network performance [9] and compared



the performance of different network interfaces (e.g., LTE and WiF1i) [19]. Pa-
pers focusing on individual users’ data consumption show a large diversity in
the amount of data used by different users and different apps on mobile and
WiFi networks [BI6JT3I2T]. These lead to distinct temporal usage patterns, which
[12] showed can be leveraged to improve users’ experience with intelligent WiFi
offloading. Similarly, [I0] shows that delaying mobile off-screen traffic, which is
assumed to be delay-tolerant, can improve energy usage. Another work on Super
Bowl traffic shows that short-term delays can be leveraged to eliminate conges-
tion [4]. Our work provides a more nuanced estimation of delay tolerances and
examines their monetary value to users by offering price incentives.

3 Methodology

We designed the trial to determine the effects of data usage monitoring and a
combination of TDP with usage monitoring. We first outline the trial structure
and then describe the data collected and apps distributed to trial participants.
We finally present a model for users’ price-delay tolerances that allows us to
evaluate TDP’s benefits for ISPs.

3.1 Trial Participants and Structure

We recruited 27 active trial participants from an ISP’s customer base. While our
sample size is small, the number of participants was limited by the fact that we
changed some of their mobile data plans to TDP, broadening the trial’s financial
implications beyond those of simply measuring usage. All participants used their
own Android devices. They did not use data monitoring apps before the trial,
but did have monthly data caps.

All active participants downloaded custom-built apps for the trial, which
we describe in more detail in the next section. These participants were divided
into two groups: time-independent pricing (TIP) and TDP users. The TIP users
installed data monitoring apps, allowing us to estimate the effect of usage mon-
itoring with data caps. The TDP users’ app both monitored data and offered
time-dependent prices. Thus, their behavior is affected by both data monitoring
and TDP. We additionally collected passive network data on more than 5000
“control” users, who did not install any apps. Table [I] summarizes the three
groups of users.

The control and TIP users’ data caps, which are not shared among devices,
ranged from 1 to 10 GB and were the same as before the trial. TDP users were
charged hourly time-dependent prices, e.g., $10/GB from 12 to lam and $15/GB
from 1 to 2am. The prices offered ranged from $10/GB to $20/GB, and were
chosen to be no higher than the ISP’s most popular data plan: a monthly 1 GB
cap for $19.99. Prices were randomly determined and shown to the TDP users
24 hours in advance, allowing them to plan their usage over the next day.



Recruitment| Data Collection | Data Plan
Control| Random RADIUS logs Unchanged
TIP| Volunteer |Trial app & RADIUS|Unchanged
TDP| Volunteer |Trial app & RADIUS|TDP rates

Table 1: Three groups of trial participants.
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(a) TIP app home. (b) Usage graphs. (c) Per-app usage. (d) TDP app home.

Fig. 1: Screenshots of the TIP and TDP apps. The TIP app’s small pie chart
indicator on the upper left of the screen indicator bar shows the approximate
portion of a user’s monthly data cap used so far. The TDP app’s colored price
indicator on this bar indicates the current price range.

3.2 Data Collection

Our dataset consists of two separate types of data: one 21.5 GB set of RADIUS
network data, and one 10.5 GB set of application usage data. The RADIUS data
was collected from March 2012 to June 2013 for all TIP, TDP, and control group
users and contains 140 million session records, including input and output byte
counts and start and end timestamps.

The second dataset was collected by TIP and TDP trial participants’ apps
during the June 2013 trial. This data consists of uplink and downlink cellular
and WiFi byte counts for every application, collected every ten minutes, as well
as the hourly prices offered to TDP participantsﬂ We developed separate TDP
and TIP apps for the trial, which collect usage information and display it to
users.

The TIP app is a usage monitoring application with screens shown in Figs.
Users could view their monthly, weekly, and daily usage as a fraction of
their data cap (Figs. [lal and , as well as their per-app usage (Fig. . Daily
and weekly data caps were calculated based on the monthly cap and number of
days left in the month. Users could quickly see the remaining fraction of their
monthly cap by looking at the pie chart icon on the bar at the top of the screen.

4 We did not collect more detailed data, e.g., packet traces, to maintain users’ privacy.
Participants fully consented to the data collection, but complete anonymity was not
possible as we had to calculate how much to charge the TDP users.



The TDP app allows users to monitor their spending on data and see the
future prices. As with the TIP app, users can see their per-app usage (Fig. .
However, the main screen has been modified (Fig. to show the future prices
and the amount the user has spent during the month. On the top left of the home
screen bar, we show a color-coded price indicator that is visible both inside and
outside our app; the indicator lets users easily see the current price, making it
easier for them to decide whether or not to consume data at a given time [I5].
It is colored red, orange, yellow, or green for high, medium, low, and very low
prices respectively.

3.3 Estimating Price-Delay Tolerances and Optimizing Prices

We quantify users’ price-delay tolerances by fitting their observed usage with
TDP to a model of users’ expected usage volume given the prices offered and
their price-delay tolerances. We then calculate the ISPs’ expected profit and
users’ expected traffic patterns with these user parameters. We use the following
process:

Establish baseline usage: We establish the average amount of data used in
each hour of the day by extrapolating from TDP users’ pre-trial RADIUS data.
We divide the usage into different apps using the fraction of data used by each
app in each hour by TIP users

Model users’ price-delay tolerances: We use a model adapted from our
previous work [8I17]. We define “waiting functions” wg(d,t) that give the prob-
ability that a user will wait for time ¢, given a savings d on the usage price. The
waiting functions have the form wg(d, t) = C(8) max(d, 0)(t +1)~#, where C(j3)
is a normalization constant and the 8 parameter controls the user’s “willingness-
to-wait:” wg decreases faster with ¢ for larger 8, making users less likely to wait
for longer amounts of time. The value of 5 differs for different applications, e.g.,
a user is more likely to delay a software update than checking email. We can
compare apps’ delay tolerances by comparing their S parameters.

Estimate the model parameters: We choose the model parameters that
provide the best fit between observed TDP trial usage and the usage predicted
by our model, given the prices offered during the trial.

To predict TDP usage, we identify two types of changes in usage relative to
the baseline: first, users may shift some usage from higher- to lower-priced times.
We use the waiting functions above to calculate the expected amounts shifted for
each app. Second, price discounts can induce users to increase their overall usage
[I5/17]. Since the amount of the increase depends on the app and time of the day
(e.g., users are unlikely to increase their usage while sleeping), we parameterize
the usage increase with a,(t), which depends on the app a and hour ¢. We use
the form V,(t) ((1 +d(t))®«®) — 1), where V,(¢) is the pre-trial (baseline) usage
for app a and d(t) the discount offered (i.e., the maximum price, normalized to 1,

5 We use per-app data for the TIP users since TDP can skew the app distribution 8,
and we have no pre-trial per-app data. RADIUS logs do not have per-app data, and
distributing apps before the trial would have skewed users’ behavior.
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Fig. 2: Average daily usage (March 2012-June 2013).

minus the offered price) in hour ¢. In accordance with the economic principle of
diminishing marginal utility, we constrain «,(t) € [0,1]. Note that if a,(t) = 0,
the usage does not increase with d(t). We add this term to the amount of traffic
shifted to find the total traffic for each app in each hour as a function of the
discounts offered and model parameters 5 and ().

Calculate profit-maximizing prices: Given the parameter estimates, we can
optimize the prices offered over the day so as to maximize ISPs’ profit with TDP,
i.e., revenue minus cost. The revenue is simply the sum of the time-dependent
prices multiplied by the expected usage under TDP. We model the cost as a
piecewise-linear function, with zero marginal cost below a fixed capacity C' and
a constant marginal cost v for usage above this capacity. Thus, ISPs will choose
time-dependent prices so as to maximize their profit

Y (1=d(t) X(t) = ymax (X(t) - C,0), (1)

t=1

where X(t) is the expected usage at time ¢ after TDP. By continually re-
estimating the price-delay tolerances and re-optimizing the prices offered ac-
cordingly, the ISP can adapt its prices to changes in user behavior.

4 Traffic Characteristics

In this section, we first construct baseline usage information for TTP, TDP, and
control users from our pre-trial RADIUS dataset. We then characterize the major
apps used by TIP and TDP users. In all figures, hours given are in local time.

4.1 How much data do users consume?

Figure [2[ shows the cumulative distribution function (CDF') of all users’ average
daily usage. We see that the TIP and TDP users use similar amounts of data,
ranging from 2 to 100MB, i.e., a few hundred MB to 3 GB per month. While a
substantial minority (34.1%) of control users use less than 1MB per day, none
of these users volunteered for our TIP or TDP trial groups.
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g.3: Average monthly usage for the TIP, TDP, and control users
Rank App (Mobile) % App (WiFi) %
1 com.facebook.katana 15.24 com.facebook.katana 18.93
2 android.process.media 11.39 android.process.media 17.83
3 com.pandora.android 9.05 com.android.browser 11.64
4 com.android.browser 8.71 com.android.email 7.37
5 com.android.email 7.26 mobi.ifunny 6.75
6 mobi.ifunny 3.19 com.android.chrome 4.20
7 com.motorola.motoemail 2.27 com.pandora.android 3.64
8 com.datawiz.tip 2.01 |com.rhythmnewmedia.android.e| 3.00
9 |com.motorola.blur.service.main| 1.99 com.alphonso.pulse 2.51
10 com.motorola.contacts 1.99 com.datawiz.tip 2.11

Table 2: Usage fraction of the top 10 apps, comprising 63.1 and 78.0% of total
mobile and WiFi usage respectively.

Users’ average daily usage changes over time. Figure[3|shows the average daily
usage in each month over one year (March 2012-February 2013), fitted with a
linear trendline. We see that usage generally increases for TIP and control users,
as is consistent with the growing amounts of mobile data traffic, but remains
anomalously flat for TDP users. Usage observed during the June 2013 trial period
fits this trend for the control group. However, the TIP users see a large decrease
and the TDP users a slight increase in usage compared to that predicted by the
trendlines. Thus, TIP users decrease their usage and TDP users increase their
usage during the trial. We examine these findings and their psychological causes
in Section [l

4.2 How is usage distributed among apps?

Table [2| shows the fraction of mobile (cellular) and WiFi usage corresponding
to the top 10 apps. Many of the same apps appear for mobile and WiFi, with
Facebook and Android’s media process the number 1 and number 2 apps for both
interfaces. Pandora, web browsing, email, and iFunny also appear in the top 7
apps for both WiFi and mobile usageF_;] Mobile usage is more evenly distributed
among apps than is WiFi usage, with the top 10 apps comprising 63.1% of mobile
and 78.0% of WiFi usage. Apps outside the top 10 each accounted for less than
2% of usage.

S Larger sample sizes with a broader population may yield different top apps.
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Fig. 4: Mean hourly usage for the top 4 apps.

Figure[dshows the hourly usage of the top four apps for mobile and WiFi. We
see that WiFi is generally used more in the evenings, likely because people are
at home then and have WiFi connectivity there. While most apps have generally
similar usage patterns, there are some differences: Pandora, for instance, is only
used between 5am and 3pm on mobile and peaks around 10am. Android’s media
process, which is used by other apps to stream videos, shows high peaks for
mobile and WiFi usage, likely due to its high bandwidth requirements.

5 Pricing Effects

In this section, we present the trial results. Throughout the discussion, we use the
peak-to-average ratio (PAR) of hourly usage over a day to measure the degree
to which ISPs must over-provision their network. A higher PAR indicates that
the ISP’s network has more idle capacity, as it is provisioned for higher peak
capacity than is needed on average. Before the trial, TIP and TDP users had an
average PAR of 1.88, indicating that the peak hourly traffic was almost twice
the mean.

We first show that TIP users decrease their total usage to remain below
their data caps, but increase their mobile usage’s PAR and may increase their
overall WiFi usage. TDP users increase their usage in response to price discounts,
allowing ISPs to reduce their PAR by up to 31.4% with profit-maximizing prices.

5.1 Do TIP users decrease their usage?

Most TIP users decrease their usage in order to remain below their data caps.
However, their PAR increases to 2.67 from 1.88 before the trial.

Figure [pa] shows TIP usage as a fraction of users’ data caps before and during
the trial. Each circle represents a user, and the circle size is proportional to the
user’s data cap. The dashed line represents equal usage fractions before and
during the trial. In general, users’ usage amounts are closer to their data cap
during the trial. A few users’ data points lie above the dashed line, indicating
that they used less of their data caps during the trial. These users, all with
relatively small 1GB caps, exceeded their data caps before the trial, but no
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Fig.6: Change in hourly usage relative to pre-trial usage for the same user in
the same hour of the day.

users did so during the trial. Other users’ data points lie below the dashed line,
indicating that they used more of their data caps during the trial than before.
The data monitoring app ensured that they did not have to worry about hitting
their data caps.

We conjecture that users reduce their monthly data usage by shifting some of
their usage to WiFi. While we do not have pre-trial WiFi statistics (WiFi data
was not collected by the network), 65.42% of TIP users’ data was consumed
over WiFi, versus 55.39% of TDP users’. Figure |5b|shows the hourly mobile and
WiFi usage patterns for TIP and TDP users. WiFi is used more than mobile in
the evening, and spikes at these times for TIP users. This spike may indicate
unusually large WiFi usage due to users’ not using mobile data.

5.2 Do TDP users respond to price discounts?

TDP users increase their usage more in discounted hours. ISPs’ profit-maximizing
prices can decrease their peak-to-average hourly traffic ratio by up to 31.4%.
Price-delay tolerances: We offered four different prices during the trial:
$10 (green price indicator), $15 (yellow), $18 (orange), and $20 (red) per GB.
Figure |§| shows the % change in usage in different hours for each price, com-
pared to usage in the same hour (e.g., 12 to lam) for the same user before the
trial. While the TTIP usage changes are similar for all prices, TDP users have
more positive changes for $10/GB versus $20/GB, in both the bottom 90th
(Fig. @ and top 10th (Fig. percentiles of usage changes. The difference



App Estimated S|Mean a
com.facebook.katana 2.326 0.503
android.process.media 1.341 0.234
com.pandora.android 0.479 0.141
com.android.browser 0 0.212
com.android.email 3.000 0.979

Table 3: Price-delay tolerance for the top 5 mobile apps.
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Fig. 7: Peak-to-average hourly traffic ratio with TDP.

is less pronounced for the intermediate $15/GB and $18/GB prices, but is still
apparent, especially around the 80th percentile. TDP users thus distinguished
between very low, moderate, and high prices, perhaps using the colored price
indicators. For all prices, TDP users had more positive usage changes than TIP
users, likely because they were saving money on some of their usage and felt
they could use more data overall. TDP changes above the 97th percentile are
less price-dependent, but these are likely outliers occurring when usage increases
during hours of very small pre-trial usage.

As explained in Section we compare the delay tolerance for different
apps by fitting our waiting function model to the trial usage. Table [3| shows the
resulting 8 parameters and average a parameters over time for the top five mobile
apps (Table . We see that while Pandora has a lower value of 3, corresponding
to higher delay tolerance, email has the lowest delay tolerance (highest value of
B). Web browsing, however, has the highest delay tolerance, perhaps reflecting
users’ use of the web for looking up non-urgent information. Surprisingly, email
has the highest « value (i.e., increase at low-price times independent of shifting),
likely because users downloaded more email attachments and images when the
price was low.

Maximizing ISP profit: Finally, we use the parameters in Table [3| and
app usage fractions in Table [2] to calculate the optimal time-dependent prices
offered by the ISP, which maximize for different marginal costs of exceeding
capacity (7). To measure TDP’s effect on usage peaks, we calculate the PAR
with these optimized prices. Figure [7] shows the achieved PAR for a range of v
values, compared to that before the trial. Even when v = 0, the PAR improves
due to discounts in less congested hours, which induce an increase in usage and
revenue. Thus, TDP can more effectively increase ISP profit and reduce the
network’s PAR than can simple data caps.



6 Discussion and Conclusion

Pricing is a unique way of controlling network usage in that it explicitly relies on
user attitudes and responses to incentives. Thus, to supplement our measurement
results, we conducted three opinion surveys with the TIP and TDP participants
before, during, and after the trialm As part of the survey, users were asked their
opinions on TDP’s viability. Most users—especially TDP users in the mid-trial
survey—expressed some concern over TDP’s possible complexity. However, nearly
all users preferred TDP to forced usage throttling in the mid- and post-trial
surveys. Combined with our measurement results, we see that TDP can be more
effective than capping or throttling usage, but must be implemented carefully
to avoid undue complexity. One possible strategy is to use binary prices, e.g.,
charging either $10/GB or $20/GB in any given hour.

Our work shows that users do change their behavior in response to changes
in their pricing plans; in particular, TIP users reduce their usage in response to
data caps, possibly increasing their WiFi usage. However, data caps are not suf-
ficient to prevent ISPs’ need to over-provision networks according to their peak
usage. Time-dependent pricing allows ISPs to reduce their peak-to-average traf-
fic ratio, yet requires more sophisticated understanding from users than monthly
data caps. While customers are willing to shift their usage in response to time-
dependent prices, a full implementation and deployment of TDP will require
more experimentation with a wider range of users.
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