
ExLL: An Extremely Low-latency Congestion Control for Mobile
Cellular Networks

Shinik Park

UNIST

sipark@unist.ac.kr

Jinsung Lee

University of Colorado Boulder

jinsung.lee@colorado.edu

Junseon Kim

UNIST

jskim@unist.ac.kr

Jihoon Lee

University of Colorado Boulder

jihoon.lee-1@colorado.edu

Sangtae Ha

University of Colorado Boulder

sangtae.ha@colorado.edu

Kyunghan Lee

UNIST

khlee@unist.ac.kr

ABSTRACT
Since the diagnosis of severe bufferbloat inmobile cellular networks,

a number of low-latency congestion control algorithms have been

proposed. However, due to the need for continuous bandwidth prob-

ing in dynamic cellular channels, existing mechanisms are designed

to cyclically overload the network. As a result, it is inevitable that

their latency deviates from the smallest possible level (i.e., mini-

mum RTT). To tackle this problem, we propose a new low-latency

congestion control, ExLL, which can adapt to dynamic cellular

channels without overloading the network. To do so, we develop

two novel techniques that run on the cellular receiver: 1) cellular

bandwidth inference from the downlink packet reception pattern

and 2) minimum RTT calibration from the inference on the uplink

scheduling interval. Furthermore, we incorporate the control frame-

work of FAST into ExLL’s cellular specific inference techniques.

Hence, ExLL can precisely control its congestion window to not

overload the network unnecessarily. Our implementation of ExLL

on Android smartphones demonstrates that ExLL reduces latency

much closer to the minimum RTT compared to other low-latency

congestion control algorithms in both static and dynamic channels

of LTE networks.

CCS CONCEPTS
• Networks → Network protocol design; Transport proto-
cols; Network performance analysis;

KEYWORDS
Congestion control, Cellular network, Transport protocol

ACM Reference Format:
Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee, Sangtae Ha, and Kyung-

han Lee. 2018. ExLL: An Extremely Low-latency Congestion Control for

Mobile Cellular Networks. In CoNEXT ’18: International Conference on emerg-
ing Networking EXperiments and Technologies, December 4–7, 2018, Heraklion,
Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.

3281430

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281430

1 INTRODUCTION
Recent observations in the Internet revealed that TCP sessions often

suffer from exceptionally long packet delay even in a small band-

width delay product (BDP) network. Gettys et al. termed this phe-

nomenon as bufferbloat [13] and diagnosed it as an over-buffering

problem at the bottleneck link, mostly caused by TCP’s loss-based

congestion control mechanism that keeps pushing packets to the

network until the bottleneck queue becomes full.

Follow-up measurement studies [14, 18, 21] confirmed that the

bufferbloat problem is often severe in cellular networks. They diag-

nosed that Cubic [15], the default TCP congestion control algorithm

in Linux (hence, the default in most Android devices) and in Win-

dows [7], is aggressive enough to quickly fill up cellular network

buffers, resulting in up to several hundred milliseconds of additional

packet latency.

1.1 Exploiting Cellular Network
Characteristics for Protocol Design

In order to tackle such a latency problem in cellular networks,

there have been various research proposals on designing a low-

latency congestion control algorithm [10, 21, 23, 24, 33, 36]. These

approaches, however, have not fully leveraged cellular network

specific characteristics.

For example, for the downlink scheduling the base station (BS)

schedules downlink packets towards multiple user equipments

(UEs) at 1 ms granularity (a.k.a. transmission time interval, TTI),

based on both the signal strength reported by each UE and the

current traffic load [9]. This indicates that we can instantly infer the

cellular link bandwidth by observing packet reception patterns in a

very short time window instead of explicitly probing the bandwidth

or measuring throughput for a relatively long period of time (e.g., a

few RTTs). For the uplink scheduling, the BS needs to grant uplink

transmission eligibility for each UE, which happens at a regular

interval known as SR (scheduling request) periodicity [3]. We find

that ignoring such a scheduling pattern often underestimates the

minimum RTT and leads congestion control algorithms to run in

unrealistic operating points.

Furthermore, the minimum RTT value is not generally affected

by the channel condition between UE and BS due to adaptive MCS

(modulation and coding scheme) selection used in LTE systems,

which approximately eliminates MAC-layer retransmissions, but

also not affected by other UEs connected to the same BS since

per-UE queue is isolated.

307

https://doi.org/10.1145/3281411.3281430
https://doi.org/10.1145/3281411.3281430
https://doi.org/10.1145/3281411.3281430

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

The understanding of the aforementioned factors has important

implications on the design of an extremely low-latency congestion

control and its best performance in throughput and delay. In par-

ticular, to cope with highly dynamic channel conditions in cellular

networks, it is vital to obtain both achievable maximum throughput

and minimum RTT as quickly and accurately as possible, so that the

congestion control algorithm can always exploit up-to-date BDP

for low-latency control.

1.2 Gap from Ideal Latency: Existing Latency
Optimized Protocols

In order to check the latency performance of existing low latency

congestion control algorithms including Cubic, we perform our own

measurement with an Android smartphone over a static LTE chan-

nel as shown in Figure 1. We compare the performance (mean and

95-th percentile) of existing latency optimized congestion control

protocols along with a simple protocol that sends at a constant rate

(β×BDP). The minimum RTT andmaximum throughput achievable

for the tested channel are about 47 ms and 90 Mbps, respectively.

While Cubic suffers from long packet latency of 230 ms, BBR [10],

PropRate [23] and Verus [36] achieve 104 ms, 71 ms, and 76 ms,

respectively, with similar or much lower throughput
1
. Low-latency

algorithms show significant RTT suppression compared to Cubic,

but their latency performance is still far from the ideal one char-

acterized by sending the BDP variants (β = 0.9, 1.0, 1.1), which is

to achieve about 68 ms at 90 Mbps throughput. It is intriguing that

BBR and PropRate that are designed to track and utilize the BDP

of the network are performing not as good as sending the BDP.

However, considering the overhead from cycling several modes

of operation to probe bandwidth and RTT, the existence of the

performance gap is not surprising.

1.3 ExLL Contributions
To bridge the gap, we propose a new low-latency congestion control

for mobile cellular networks, namely ExLL (Extremely Low Latency)

that reduces latency as close to the minimum RTT while retaining

the same level of throughput that Cubic achieves. To obtain such

performance, instead of probing the network, ExLL estimates the

bandwidth of cellular channels by analyzing the packet reception

pattern at an LTE subframe granularity in the downlink and also

estimates the minimum RTT more realistically by incorporating

SR periodicity in the uplink. As these estimations can be done re-

liably at each UE, ExLL takes the receiver-side design as its first

choice. With the bandwidth and latency estimations, ExLL adopts

the control feedback in FAST [32] to compute its receive window

(RWND). This receiver-side ExLL design is immediately deployable

to cellular UEs without compromising servers as it makes the con-

gestion control protocol running on the servers set its congestion

window (CWND) based on the RWND from ExLL receiver. Further-

more, ExLL can be implemented as sender-side as well. We later

demonstrate that both implementations have a minor performance

gap in practice.

1
We test protocols based on the source code provided by the authors. Tuning them to

operate more aggressively to achieve maximum throughput is possible, which may,

however, lead to significant increase in latency. Thus, we do not modify or tune them.

40 60 80 100 200 300 400 500
Latency (ms)

0

20

40

60

80

100

T
p
u
t

(M
b
p
s)

0.9xBDP
1.0xBDP
1.1xBDP
Cubic [15]
BBR [10]
PropRate [23]
Verus [36]
Sprout [33]
Vegas [8]
95-th percentile

Figure 1. Mean and 95-th percentile RTT against the aver-
age throughput of various congestion control algorithms
compared with that of sending a static congestion window
around BDP over a real LTE network.

Our comprehensive experiments carried out over commercial

LTE networks confirm that ExLL can always achieve shorter RTT

which is much closer to the minimum RTT while retaining similar

throughput of Cubic. More specifically, in a stationary scenario

where an Android smartphone is stably connected to an LTE net-

work with 50 ms of its minimum RTT and 75 Mbps of its maximum

throughput, ExLL attains on average 66 ms RTT while maintain-

ing throughput of 72 Mbps; BBR and Cubic attain about 110 ms

and 261 ms RTT with about 70 Mbps and 75 Mbps. PropRate and

Verus show lower throughput about 59 Mbps and 39 Mbps and

attain around 61 ms and 92 ms RTT. In a mobile scenario where a

smartphone user moves between good (-95 dBm) and bad channels

(-125 dBm), ExLL retains around 61 ms and 45 Mbps while BBR and

Cubic stay around 78 ms and 395 ms with about 40 Mbps and 46

Mbps. PropRate and Verus shows 53 ms and 63 ms but is with only

23 Mbps and 34 Mbps.

In summary, our contributions are three-fold.

• We develop novel techniques that can estimate the cellular

link bandwidth and realistic minimum RTT without explicit

probing, which can be easily extended to next-generation

cellular technologies such as 5G.

• We incorporate the control logic of FAST into ExLL to mini-

mize the latency even in dynamic cellular channel conditions.

• We implement ExLL in both receiver- and sender-side ver-

sions that givewider deployment opportunities. The receiver-

side ExLL can provide an immediate solution for untouched

commodity servers while the sender-side ExLL can provide

a fundamental solution for 5G URLLC (ultra reliability and

low latency communication) services [28].

2 OBSERVATIONS
In this section, we present several observations from both commer-

cial LTE networks and our controlled LTE tested. In Section 3, we

introduce ExLL’s cellular specific inference techniques to achieve

low latency without sacrificing throughput.

2.1 Measurement Setup
We conduct measurements in commercial LTE networks and in

our in-Lab LTE testbed. Software settings represented by kernel

and Android OS versions and hardware specifications such as LTE

308

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Table 1: Server and Android device specification

Real LTE Processor LTE Modem Kernel OS

Server i7-6700K - Linux 4.13 Ubuntu 16.04

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0

in-Lab LTE Processor LTE Modem Kernel OS

Server i5-7200U - Linux 4.13 Ubuntu 16.04

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0

chipsets equipped in cellular devices are summarized in Table 1.

Our in-lab LTE testbed consists of indoor small cell base stations

(i.e., eNBs) and EPC (evolved packet core) software implementing

MME (mobility management entity) and S/P-GW (serving/packet

gateway) [1]. We put Android phones inside a shield box, so that

the phones can communicate with the eNB via a pair of antennas

inside the box. The signal attenuator installed between the shield

box and the eNB can emulate a variety of RF conditions. For EPC,

we use the open source NextEPC [26] that implements features up

to 3GPP LTE Release 14.

2.2 Cellular Network Characteristics
Max throughput and min RTT in the cellular network: We

first test throughput and RTT in a commercial LTE network by

physically moving two cellular devices from a certain location

where the received signal strength indication (RSSI) is about -75

dBm to another locationwith -105 dBm.Wemeasure the throughput

of one device by downloading a large file from our in-lab server

running Cubic. At the same time, we alsomeasure the instantaneous

RTTs by repeating ping tests in another device. Note that both

devices are connected to the same LTE eNB. Figure 2 (a) shows

RTT from ping tests, throughput from downloading, and RSSI over

time from the three test runs. We can see that RTT stays nearly at

the same level even when the RSSI varies widely, but achievable

throughput fluctuates accordingly.

Min RTT over different RSSI values: The minimum RTT ob-

served from a network has been one of the most important com-

ponent in delay-based congestion controls, as it indicates the RTT

with nearly zero queueing delay. In the cellular network, however,

it is unclear if the physical channel condition largely affects this. To

demonstrate the impact of RSSI on the minimum RTT, we average

100 ping measurements for different levels of RSSI. As shown in

Figure 2 (b), the minimum RTT (the lower end of a confidence

interval) is not much affected by RSSI. We conjecture that this is

because of MCS adaption to a different channel quality for reliable

packet transmissions in the MAC layer, which limits additional

delay from retransmissions. Another interesting observation is that

RTT variation is also very stable over different RSSI values. We find

the rationale behind this stable RTT variation from the implemen-

tation of SR periodicity of LTE networks, which we investigate the

details in Section 3.2.

Per-UE queueing2 in LTE networks: To see if the LTE network

employs a per-UE queue, we run two Cubic flows on two cellphones

(one flow on each cellphone). Then, we replace one Cubic flow with

a Cubic flow whose CWND is cropped by BDP. Figure 3 confirms

that each UE has its own queue, not affecting the other competing

2
Each UE is given a default bearer that serves all best-effort traffic. For simplicity, we

denote the queue of the default bearer as per-UE queue here.

0 10 20 30
0

50

100

R
T

T
 (

m
s)

0 10 20 30
0

100

200

T
p
u
t

(M
b
p
s)

0 10 20 30

Time (s)

-110
-100
-90
-80

R
S

S
I

(d
B

m
)

(a) RTT, throughput, and RSSI from three test runs in a mobile scenario

-110 -107 -104 -101 -98 -95 -92 -89 -86 -83 -80 -77 -74

RSSI (dBm)

40

50

60

R
T

T
 (

m
s)

Average

(b) RTT statistics (with average and 100% confidence interval) from channels with

different RSSI values

Figure 2. (a) RTT and throughput measurements in a com-
mercial LTE network while moving cellular devices from a
location with strong signal strength to a location with weak
signal strength, (b) RTT statistics measured by ping tests
over a commercial LTE network with different RSSI values.

0 10 20 30
0

50

100

T
p

u
t

(M
b

p
s) Cubic 1

 Cubic 2

0 10 20 30

Time (s)

0

250

500

R
T

T
 (

m
s)

(a) Both receivers download datawith Cubic

0 10 20 30
0

50

100
 Cubic
 Cubic cropped by BDP

0 10 20 30

Time (s)

0

250

500

(b) One receives data with Cubic while

another does with Cubic cropped by BDP

Figure 3. Throughput and RTT when (a) two cellular re-
ceivers in the same eNB download data with Cubic each, (b)
one receiver downloads with Cubic and another downloads
with Cubic cropped by BDP.

UE’s RTT while achieving the same throughput even by capping

the CWND.

As discussed in [33], the per-UE queue in cellular networks is

an important factor in designing a low-latency congestion control

algorithm because the delay in the queue is only affected by its

own control, not by other congestion control algorithms running

on other cellular devices in the same BS. This motivates us to focus

more on a receiver-side design that can turn Cubic flows from any

servers to the receiver into low-latency flows.

309

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

10 ms

1 ms

(a) Downlink packet reception patterns in the beginning of a new flow

10 ms

1 ms

(b) Downlink packet reception patterns after a few seconds

Figure 4. Snapshot of received packets over time when downloading data with Cubic at the UE and the detailed packet recep-
tions mapped onto allocated subframes (colored) in radio frames for the UE.

3 EXLL’S NETWORK INFERENCE
ExLL leverages downlink and uplink scheduling mechanisms of

cellular system to inform the design of an extremely low latency

protocol without having throughput degradation.

3.1 Cellular Downlink
In mobile cellular networks that experience frequent bandwidth

fluctuations, an efficient probing becomes more important, as ex-

plored by recently proposed low-latency congestion control algo-

rithms such as Verus, BBR, and PropRate. Although how to probe

optimally is still an open question, we can postulate that probing

in a way that injects packets excessively to the network even for

short duration such that the network becomes temporarily over-

buffered is far from optimum in terms of latency. To overcome

this challenge, we can exploit recent proposals that enable the es-

timation of available cellular network bandwidth either from 1)

extracting PHY-layer parameters [24, 34, 35] or 2) running a ma-

chine learning [17]. However, they also bring new practical issues

such as extracting PHY-level information is only supported by spe-

cific chipset vendors (e.g., Qualcomm) with additional software

tools (e.g., QXDM) that need rooting a device. A machine learning

based approach [17] eliminates the need for such complications.

However, learning parameters takes time, and thus momentary

changes in cellular networks such as traffic load and channel con-

dition are hard to be tracked in real time. To this end, ExLL takes

a relatively simple yet effective approach. ExLL observes packet

receiving patterns in a cellular device and finds clues to estimate

the available bandwidth from the scheduling decisions of cellular

networks without explicitly probing the network.

Downlink scheduling pattern: LTE systems are designed to sched-

ule downlink packets by the unit of subframe whose duration is 1

ms [1]. Also, ten subframes are grouped to form a radio frame of

length 10 ms. Each subframe consists of two slots of 0.5 ms duration

and one slot contains multiple resource blocks (RBs) with 180 kHz

bandwidth each [2]. The RB is the smallest resource unit allocat-

able to an LTE UE and the number of RBs in a slot is determined

by the total bandwidth. For example, 10 MHz which is a typical

bandwidth of commercial LTE networks has 50 RBs. According

to [22], the physical-layer specification from 3GPP defines that an

LTE network with 10 MHz bandwidth, 256 QAM for modulation,

and 2x2 MIMO antennas can reach up to 100.8 Mbps. Therefore, the

network can deliver 12,600 bytes during one subframe, thus each RB

carries about 252 bytes. Provided that most commercial networks

set their MTU sizes between 1,428 and 1,500 bytes [27], such an

LTE network can carry at most 8.4 to 8.8 packets per subframe.

When carrier aggregation in the LTE-Advanced networks [1, 30] is

activated, multiple frequency bands (e.g., 2 or 3 bands) can add up

and the total bandwidth increases to 20, 30, 40, or 50 MHz. Then, the

data rate and the number of packets downloadable in a subframe

increase accordingly.

In Figure 4, we count the number of downlink packets received

by a cellphone from a server running Cubic in the 45 ms RTT net-

work. The cellular bandwidth is 50 MHz from carrier aggregation.

As depicted, at every 1 ms, a group of packets are received while

the group size varies from 2 to 44 by subframes. This is well aligned

with the aforementioned description of LTE downlink. Furthermore,

we present the packet counts by the unit of subframe (1 ms) and

radio frame (10 ms) in the same figure. In particular, the colored

subframes indicate allocated subframes during which packet recep-

tions are made by allocated RBs, and the numbers on the colored

subframes denote the number of received packets during each sub-

frame while N (f) denotes the total number of packet receptions

during one radio frame (10ms). Figure 4 (a) showing the initial

stage of the download implies that the number of received packets

in a radio frame increases rapidly as CWND increases. Thus, in

the initial stage, the downlink behavior temporarily depends on

CWND growth. However, in a few seconds as Figure 4 (b) shows,

the patterns of allocated subframes change, but the total number of

packet receptions per radio frame becomes stable. This is because

subframe allocations are averaged out in a radio frame, and the

averaged packet reception is governed by the chosen MCS and the

scheduling quota for each receiver. We define metrics for ExLL’s

bandwidth estimation below.

Cellular downlink bandwidth estimation: We let fi and F (·)
denote the i-th radio frame for a given UE and a bandwidth esti-

mation function that converts fi into a value in Mbps, respectively.

The operation of F (fi) is as simple as counting the received bytes

during one radio frame divided by 10 ms. In a special case where fi
does not include any allocated subframe, such fi is ignored. We also

310

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

5 3 8 2 7 2

Unallocated subframeAllocated subframe

Radio frame fi (10 ms)

subframe sij (1 ms)

F (fi) =

∑
j∈S(fi)

bij

10 ms
= 31.54 Mbps

C(fi) =

∑
j∈S(fi)

bij
∆tij

|S(fi)|
= 96.38 Mbps

∆ti1 ∆ti3 ∆ti7 ∆ti8 ∆ti9 ∆ti10

Figure 5. Sample calculation of F (fi) and C(fi) from packet
receptions in a given radio frame fi .

define a microscopic bandwidth estimation function,C(·), which fo-

cuses more on average packet reception intervals within a subframe

to estimate the maximum channel bandwidth as follows:

C(fi) =

∑
j ∈S (fi) bi j/∆ti j

|S(fi)|
, (1)

where bi j , ∆ti j , and S(fi) denote the amount of received bytes

within j-th subframe (si j) of i-th radio frame, the time gap between

the first packet and the last packet receptionwithin si j and the index
set of allocated subframes in fi , respectively. By definition, C(·)
captures the total channel bandwidth before it is split to multiple

users. Therefore, in case when a BS is occupied by a single UE,C(·)
is close to F (·). But in case with the BS serving multiple UEs, C(·)
is much larger than F (·). Figure 5 illustrates how F (·) and C(·) are
computed for a sample radio frame.

F and C over dynamic channels: Figures 6 (a) and (b) present

F (·) , C(·), and the measured throughput on the UE in the carrier-

aggregated channels of 30 MHz and 40 MHz, respectively, when

the UE downloads data for 30 seconds from a server running Cubic.

Two interesting observations are found from these figures: 1) F (·)
very precisely tracks the achievable network bandwidth before

it measures the actual throughput, 2) C(·) estimates the channel

bandwidth of 300 Mbps or 400 Mbps from 30 MHz or 40 MHz

channel very precisely and quickly. When the MCS is degraded

due to a poor channel condition, F (·) and C(·) instantly detect it as

shown in the figures. C(·) estimates the best case performance for

a single UE, but even when eNB serves only one UE, the achievable

throughput can be lower thanC(·) due to QoS settings of eNB such

as UE-AMBR (aggregate maximum bitrate)
3,4

[4, 5]. We find both

metrics F (·) and C(·) are useful for different purposes. In Section

4.3 and 4.5, we detail the usage of them.

3.2 Cellular Uplink
LTE uplink scheduling is different from that of downlink. The

biggest difference is that before obtaining an uplink scheduling

grant from the BS, a UE needs to send its scheduling request by

following the SR periodicity as depicted in Figure 7. Commercial

LTE eNBs typically use SR periodicity chosen either from 5, 10, 20,

40, or 80 ms [29, 37]. While ExLL implements the SR periodicity

inference algorithm in 4.4. we experimentally show such uplink

scheduling patterns below.

Uplink scheduling patterns: Figure 8 (a) shows the receiving

packet counts in a UE downloading data from a server and Figure 8

3
This is defined to limit total throughput for each UE.

4
In general, QoS settings in eNB are invisible to UEs. However, as specified in the LTE

attach procedure of UE [4], some QoS settings can be shared from eNB to UE through

ESM (EPS session management) messages. The purpose of this sharing is to let the

UE give optional intelligence to applications that need better traffic control. Provided

such QoS settings, fine tuning of C(·) can be further made.

0 10 20 30

Time (s)

0

100

200

300

400

500

T
p
u
t

(M
b
p
s)

 Measured Tput (Cubic)
 Bandwidth estimation, F ()
 Bandwidth estimation, C ()

(a) Measurements from a real LTE net-

work with 30 MHz channel

0 10 20 30

Time (s)

0

100

200

300

400

500

T
p
u
t

(M
b
p
s)

(b) Measurements from a real LTE net-

work with 40 MHz channel

Figure 6. Comparison of measured throughput with Cubic
and bandwidth estimations from F (·) andC(·) over time done
by UE.

Downlink frames

Uplink frames

1 ms

SR Periodicity ∈ 5,10,20,40,80 ms

Figure 7.Concept of SR periodicity for cellular uplink sched-
uling in comparison with downlink scheduling.

(b) shows the receiving Ack counts in the server. The time lines

are adjusted to start from zero by the moment of receiving the

first packet. As shown in Figure 8 (a) and (b), the granularity of

Ack reception in the server is about 10 ms whereas the granularity

of packet reception in the UE is about 1 ms. This implies that SR

periodicity in the connected eNB for uplink is set as 10 ms.

RTT variation and min RTT: Figure 8 (c) shows the CDF (cumu-

lative density function) of per-packet RTT measured in the UE by

pinging the server. We find that the RTTs from the ping test vary

from 37 ms to 47 ms whose average is about 42 ms. The gap between

the maximum and minimum is about 10 ms that matches with SR

periodicity. An important lesson is drawn here. If a low-latency

congestion control simply takes the observed minimum RTT as

its measure or target for controlling CWND, the control becomes

overly conservative and loses throughput. To avoid such a problem,

we develop a realistic estimation technique for the minimum RTT

that takes SR periodicity into consideration
5
, which will be detailed

in Section 4.4.

4 EXLL DESIGN
ExLL aims at controlling its sending rate (i.e., CWND) so as to

minimize latency while achieving throughput comparable with that

of Cubic. Realizing this goal requires us to address two important

challenges: 1) given a dynamic cellular channel whose achievable

throughput and RTT vary, how do we track them precisely without

explicitly probing the network?; 2) once achievable throughput and

RTT become known, how do we use them to tightly control the

CWND so as not to deviate from the desired operating point? In

this section, we answer these questions and propose ExLL.

4.1 Control Algorithm
Thewell-known dilemma that every low-latency congestion control

has is that the queuing in the bottleneck link should be minimized

5
Note that a major cellular chipset vendor, Qualcomm, is reflecting this aspect in

assessing their latency performance in LTE networks [25].

311

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

0 10 20 30 40 50 60 70 80

Time (ms)

0

20

40

60

R
e
c
e
iv

e
d

 P
a
c
k

e
ts

(a) The number of received packets at UE

0 10 20 30 40 50 60 70 80 90 100

Time (ms)

0

20

40

60

R
e
c
e
iv

e
d

 A
c
k

s

(b) The number of received Acks at sender

36 38 40 42 44 46 48

RTT (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

(c) CDF of RTTs collected at UE

Figure 8. Snapshot of received packets and Acks over time and the distribution of RTT values observed at UE.

for latency, but it should be always non-empty for throughput.

This dilemma becomes more challenging in dynamic networks.

When the bottleneck bandwidth increases or decreases, the sending

rate should quickly change accordingly, otherwise throughput loss

or RTT increase occurs. We tackle this dilemma by revisiting the

following control equation of FAST:

wi+1 = (1 − γ)wi + γ

(
mREi
Ri

wi + α

)
, (2)

where γ ∈ (0, 1], α > 0 and wi , Ri , and mREi denote CWND at

time slot i , RTT measured at i , and the minimum RTT estimate at

timeslot i , respectively.
The equation of FAST reduces CWND as the measured RTT

deviates from the minimum RTT estimate (mRE) while persistently

pushing CWND to grow by a constant incremental factor, α . This
control equation lets a flow (say flow j) converge to the equilib-

rium data rate x (j) = α (j)/q(j), where q(j) denotes the round-trip
queueing delay of the flow (i.e., summation of all queueing de-

lays on its routing path), which is dominated by the queueing

delay at its bottleneck link. This equilibrium rate is known as

the unique maximizer of a network utility maximization problem:

maxx ≥0
∑
j α

(j)
logx (j) [32]. FAST probes and tracks the network

bandwidth as fast as Cubic, provides weighted proportional fair-

ness that does not penalize flows with large propagation delays,

and suppresses queueing in the bottleneck link compared to Cubic.

Nonetheless, it is hard to classify FAST as a low-latency congestion

control because of α , the tuning parameter. In FAST, α plays many

roles. It determines the amount of queueing in the bottleneck of a

flow, which accumulates when having multiple flows, the agility

of bandwidth adaptation, and the robustness in maintaining high

throughput. Small α may give restrained queueing that is desirable

for a low-latency congestion control, but it slows down the speed

of adaptation. More seriously, small α loses its guarantee to achieve

maximum throughput in a network in which RTT can fluctuate

heavily. In such a network, RTT fluctuation may overly reduce

CWND, thus leading to emptying the bottleneck queue.

ExLL is designed to provide a solution to the problems related to

α by using our inference techniques in the UE, while retaining all

the merits of FAST. Our solution is simple and does not complicate

the control logic of FAST. It replaces α with α(1−Ti/MTEi), where
Ti and MTEi denote the measured throughput at time i and the

maximum throughput estimate at time i , respectively. ExLL can

obtainMTEi at the UE as described in Section 4.3. Thus, the control

equation of ExLL is given as follows:

wi+1 = (1 − γ)wi + γ

(
mREi
Ri

wi + α
(
1 −

Ti
MTEi

))
. (3)

Unlike FAST,wi update in ExLL is basically done by the receiver

(UE), sowi for the receiver-side ExLL means RWND; in the sender-

side ExLL, the same equation updates CWND.

If MTEi can be obtained precisely, the revised equation has a

critical benefit over FAST. Even if α is chosen arbitrarily large for

agile and robust bandwidth probing, ExLL does not to overbuffer the

bottleneck link. This is because the increment given to congestion

window from α diminishes to zero as the actual throughput Ti
approaches the maximum throughput

6
. The equilibrium data rate

of ExLL flow j is given as x (j) = α (j)/(q(j) + α (j)/MTE(j)), where

MTE(j) denotesMTE measured for flow j . Similarly to FAST, ExLL

provides fairness to flows without any penalty in large propagation

delays.

4.2 State Transition
ExLL can be implemented either at the receiver or at the sender. The

receiver-side ExLL implementation has a significant advantage over

the sender-side one as it can work with any server running Cubic

as in Figure 9 (a). In order for ExLL receiver to take control by its

RWND, the CWND of Cubic at the server should grow sufficiently

so that min(cwnd, rwnd) is governed by RWND. Therefore, until

Cubic increases its CWND by slow start beyond the cellular link

bandwidth estimated by ExLL, ExLL stays in observation mode. As

soon as the CWND grows sufficiently, ExLL receiver exits to control
mode and starts to report RWND, computed from Eq. 3, back to the

server. If Cubic experiences a packet loss and reduces its CWND

below RWND, the recovery logic of ExLL receiver, which will be

explained in Section 4.6, detects such an event by checking the

difference between its RWND and CWND measured in the receiver.

Upon detection, the recovery logic temporarily stores that RWND

value and stops updating RWND until CWND of Cubic increases

again to exceed that RWND. When Cubic resets by a timeout, the

recovery logic also detects it and lets ExLL restart from observation

mode.

On the other hand, sender-side ExLL can have two design choices.

We can let it work by itself similarly to FAST or let it be a plug-in

module of Cubic. The former may operate efficiently in the network

where all the flows rely on ExLL, but the latter would be preferable

if there are cases for ExLL to coexist with Cubic flows. Here, we

present the latter option that may give better deployment opportu-

nity. As a plug-in, sender-side ExLL runs Cubic in the background

as shown in Figure 9 (b). When a session is initiated, ExLL relies

on Cubic to increase the CWND, cwndC , quickly by slow start. If

cwndC is determined to grow enough to achieve estimated cellular

bandwidth from checking cwndC/mRES > MTES , the CWND of

6
We use α = 200, γ = 0.5 by default. They work reliably in all experiments.

312

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Observation
and calc.

ExLL Control
and calc.

Eq. 3

Start

Timeout

detection Packet loss

detection

Ack with

Cubic Sender ExLL Receiver

Packet

Transmission
()

Slow Start

Congestion Avoidance

Start

Timeout

Exit

Recovery

Recovery

(a) State transition diagram of Receiver-side ExLL

ExLL Sender

Slow Start

Congestion Avoidance

Start

Timeout

ExLL Control
and calc.

Eq. 3

P
ac

k
et

T
ra

n
sm

is
si

o
n

(
)

A
ck

 w
it

h

Start ExLL

(b) State transition diagram of Sender-side ExLL

Figure 9. State transition diagrams of the receiver-side ExLL and the sender-side ExLL.

ExLL cwndE starts to be computed, where mRES and MTES de-

notemRE andMTE obtained at the sender, respectively. From then

on, ExLL overrides Cubic when cwndE is smaller than cwndC and

vice versa. We explain the detailed computations ofmRE andMTE
below.

4.3 MTE Calculation
AsUEs are scheduled by the BS, changes in the bandwidth of cellular

link can be observed more precisely by the UEs than the servers.

For the receiver-side ExLL implementation, we obtain MTE from

the moving average of F (·), the estimated cellular bandwidth by

observing the packet reception during the duration of one radio

frame. Because F (·) is calculated at every radio frame except for the

radio frames that have no allocated subframes, in most cases the

moving average is updated at every 10 ms. In the cellular network

with RTT of a few tens of milliseconds, ExLL receiver refreshes

MTE several times during one RTT and uses the up-to-dateMTE
for the RWND computation. As analyzed in Section 3, F (·) is capable
of figuring out cellular bandwidth changes much faster than the

throughput measurement done by the sender.

For the sender-side ExLL implementation, we estimate the UE’s

receiving rate by calculatingMTES fromAcks received at the sender

asMTES = cwnd/∆t , where ∆t denote the time difference between

the first Ack arrival and the last Ack arrival for the group of packets

sent as CWND. MTES estimates how the packets sent as CWND

are received in the receiver.

To see the difference in throughput estimation between the

receiver-side and sender-side ExLL implementations, Figure 10

comparesMTE,MTES , and the measured throughput between the

server and the UE.MTE estimated in the receiver-side ExLL shows

the fastest response in detecting bandwidth changes that are re-

flected in the measured throughput later.MTES , on the other hand,

detects the changes faster than the measured throughput, but it is

a bit slower thanMTE while the difference is marginal.

4.4 mRE Calculation
Our finding in Section 3 confirms that setting the minimum RTT,

by taking the minimum value among the observed RTT values

0 5 10 15 20 25 30

Time (s)

0

100

200

300

T
p
u
t

(M
b
p
s)

Figure 10.MTE shows the fastest response in detecting band-
width changes that are reflected in the measured through-
put later.MTES is slightly slower thanMTE but is faster than
the measured throughput.

40 45 50 55 60 65 70 75 80 85

Time (ms)

0

10

20

30

40

50

60

R
T

T
 (

m
s)

Figure 11. A sample run of apRTT and mpRTT measured at
a cellular receiver during the observation mode. T̂ SR esti-
mates 10 ms SR periodicity for the connected eNB.

can mislead the protocol control due to SR periodicity. For the

receiver-side ExLL implementation, the minimum and the aver-

age per-packet RTT are tracked during observation mode, which

are denoted bympRTT and apRTT , respectively. When the ExLL

receiver switches to control mode, it first sets mRE as mRE =
mpRTT +D(2× (apRTT −mpRTT)), where D(·) is the function that

finds the most matching SR periodicity value either among 5, 10, 20,

40, and 80 ms from the observation of T̂ SR = 2×(apRTT −mpRTT).
ExLL receiver measures per-packet RTT by the time interval

between the reception of a packet whose sequence number is n and

the reception of a packet that is brought by the Ack for the packet

n (typically from two consecutive packets sent from the sender).

We show a sample run ofmpRTT and apRTT during the observa-

tion mode of the ExLL receiver in Figure 11. As the figure confirms,

for the eNB that use SR periodicity of 10 ms, our estimation T̂ SR

313

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

Table 2: SR periodicity estimation in a real LTE network and
from our in-lab LTE testbed

Real LTE Network In-lab LTE Testbed

SR periodicity: 10 ms SR periodicity: 20 ms SR periodicity: 40 ms

mpRTT apRTT T̂ SR mpRTT apRTT T̂ SR mpRTT apRTT T̂ SR

37.65 42.55 9.793 24.98 34.18 18.39 23.74 40.69 33.89

38.61 42.58 7.945 23.78 35.29 23.02 22.82 40.47 35.30

38.59 43.04 8.915 25.17 37.96 25.60 24.01 41.15 34.29

36.85 41.90 10.10 24.85 33.16 16.62 22.99 41.60 37.22

39.16 42.89 7.469 24.52 36.73 24.43 23.67 41.25 35.17

suggests a very close value to 10 ms, and thus D(T̂ SR) becomes 10

ms. Table 2 shows the results of multiple SR periodicity estimations

done over a commercial LTE network of 10 ms SR periodicity and

over our in-lab LTE testbed with SR periodicity settings of 20 and

40 ms. In all cases, ExLL calculates T̂ SR
that correctly converts to

the ground truth SR periodicity. We also test the reliability of SR

periodicity estimation in a multi-flow scenario in which an ExLL

receiver initiates three download sessions, each lasting 30 seconds,

sequentially with the interval of 10 seconds (as depicted in Figure 15

(a)). Even with such co-existing flows, we find that all three flows

correctly estimate 10 ms as their SR periodicity.

In the sender-side ExLL implementation, the same logic runs

with per-packet RTT measurement at the sender.

4.5 Exit from Observation to Control
In order to exit from observation mode, ExLL receiver needs confir-

mation that the current CWND at the server exceeds the required

size to fully exploit the cellular link bandwidth. If the CWND fails

to grow that much, it means that the downlink flow has its bot-

tleneck in a non-cellular link. In such a case, ExLL receiver stays

in observation mode and lets Cubic running at the server control

the flow to be compatible with other competing Cubic flows. It

is known by BBR and Copa [6] that when competing with Cubic

flows in the shared FIFO queue of a non-cellular bottleneck, a low-

latency congestion control flow mostly loses its throughput. Thus,

compatibility with Cubic is an important merit of ExLL.

For the cellular bottleneck case, the exact condition to exit from

observationmode is as follows: cwndi/mREi >UE-AMBR. If CWND

measured at receiver divided by its minimum RTT estimate,mREi ,
is larger than the maximum allowed cellular bandwidth for the re-

ceiver, RWND can safely govern CWND with no potential through-

put loss. Unfortunately, UE-AMBR is hardly known at the receiver

since it is one of operator-configured parameters. Thus, we con-

servatively use Ci , the estimated channel bandwidth which is the

moving average ofC(·) at themoment as the substitute of UE-AMBR.

Using Ci guarantees no throughput loss.

4.6 Recovery from Loss or Timeout
The role of recovery logic is two-fold: 1) when the CWND of Cubic

at the sender becomes smaller than the RWND provided by ExLL

receiver, which happens mostly due to packet losses, the recovery

logic lets ExLL receiver stop computing and updating RWND until

the CWND exceeds the RWND again, 2) when Cubic at the sender

initiates a new slow start due to timeout, the recovery logic lets

ExLL restart for fresh measurements. Below we describe in more

detail.

0 5 10 15 20 25 30
0

1

2

C
W

N
D

(b
y
te

s)

10
6

 Receiver-side ExLL Sender-side ExLL

0 5 10 15 20 25 30
0

100

200

R
T

T
 (

m
s)

0 5 10 15 20 25 30

Time (s)

0

100

200

T
p
u
t

(M
b
p
s)

(a) CWND, RTT, and throughput measured in a stationary cellular receiver in a real

LTE network

40 60 80 100 120 140 160 180 200

Latency (ms)

40

80

120

160

T
p
u
t

(M
b
p
s)

Receiver-side ExLL Sender-side ExLL 95-th percentile

(b) ExLL comparison in a stationary cellular receiver from three LTE eNBs that

give different latency and throughput

0 5 10 15 20 25 30
0

1

2

C
W

N
D

(b
y
te

s)

10
6

 Receiver-side ExLL Sender-side ExLL

0 5 10 15 20 25 30
0

100

200

R
T

T
 (

m
s)

0 5 10 15 20 25 30

Time (s)

0

100

200

T
p
u
t

(M
b
p
s)

(c) CWND, RTT, and throughput measured in a mobile cellular receiver in a real

LTE network

40 60 80 100 120 140 160 180 200

Latency (ms)

40

45

50

T
p

u
t

(M
b

p
s)

Receiver-side ExLL Sender-side ExLL 95-th percentile

(d) ExLL comparison in a mobile cellular receiver from an LTE eNB with three

different mobility scenarios

Figure 12. Congestion control behaviors and performance
of receiver-side and sender-side ExLL compared in real LTE
networks while the tested cellular receiver is (a) station-
ary or (c) mobile. (b) and (d) summarize the comparison
of throughput and RTT between two implementations of
ExLL.

314

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

In most LTE networks where packet losses are nearly perfectly

concealed from transport layer thanks to mild MCS selection [9, 18],

the measured CWND in ExLL receiver from counting received

packets during one RTT matches with its computed RWND as

long as RWND is governing the CWND of Cubic at the sender.

However, when a packet loss or a timeout occurs, Cubic’s CWND

at the sender temporarily shrinks, so ExLL receiver can observe the

measured CWND is lower than its RWND. Upon this observation,

recovery focuses on the size of the measured CWND – 1) if it is

equal to the initial CWND of Cubic, recovery determines that a

timeout happened and restarts ExLL from its observation mode;

2) otherwise, recovery determines that packet losses occurred. It

reserves RWND as RWNDp and stops updating RWND until the

measured CWND recovers. During this waiting period, Cubic’s

control temporarily governs ExLL. As soon as the measured CWND

exceeds RWNDp , RWND computation as in Eq. 3 restarts and ExLL

takes the control back. By doing so, we remove potential confusion

of ExLL in controlling its RWND. The recovery logic for sender-side

ExLL works similarly.

0 5 10 15 20 25 30
0

1

2

C
W

N
D

(b
y

te
s)

10
6

 ExLL BBR

0 5 10 15 20 25 30
0

100
200
300

R
T

T
 (

m
s)

0 5 10 15 20 25 30

Time (s)

0

50

100

T
p

u
t

(M
b

p
s)

(a) CWND, RTT, and throughput of ExLL and BBR measured in a stationary UE in

a real LTE network

40 60 80 100 200 300 400 500
Latency (ms)

0

10

20

30

40

50

60

70

80

T
p
u
t

(M
b
p
s)

ExLL
1.0xBDP
Cubic
BBR
PropRate
Verus
Sprout
Vegas
95-th percentile

(b) Mean and 95-th percentile RTT against the average throughput from ExLL and

other congestion controls in a real LTE network

Figure 13. (a) A comparison between ExLL and BBR in a sta-
tionary LTE channel, (b) RTT and throughput performance
comparison between ExLL and other protocols. ExLL outper-
forms other low-latency protocols and operates very closely
to the ideal performance characterized by sending 1.0×BDP
of the network.

5 EVALUATION
In this section, we first provide a comparison between receiver-

side and sender-side ExLL. Then, using receiver-side ExLL, we

extensively evaluate ExLL in comparison with other protocols in

stationary and mobile LTE networks. We then further examine the

performance ExLL in multi-flow and non-cellular bottleneck sce-

narios. We implement receiver-side ExLL on Android smartphones

(Nexus 5X) by patching the kernel. The number of lines added

to or modified in the kernel 3.10 of Android 8.1.0 is 327 in total.

The modifications are made in two files: tcp_ipv4.c, and tcp_input.c.

Sender-side ExLL is implemented bymodifying tcp_input.c in Linux

kernel 4.13. The number of lines modified is 114. We use TCP Probe

installed in the server to monitor and throughput, CWND, and RTT

for both of sender-side and receiver-side ExLL.

5.1 Receiver- vs. Sender-side ExLL
We first compare the behaviors of receiver-side ExLL and sender-

side ExLL in Figure 12 (a) from a real LTE network whose RSSI is

stable at -90 dBm and minimum RTT and maximum throughput

are about 50 ms and 150 Mbps. Both ExLL implementations have

similar basic operations except for calculations of MTE, so similar

behaviors are indeed observed. They both exit from Cubic at the

0 20 40 60 80 100 120
0

5

10

C
W

N
D

(b
y
te

s)

10
5

 ExLL BBR

0 20 40 60 80 100 120
0

100

200

R
T

T
 (

m
s)

0 20 40 60 80 100 120

Time (s)

0

50

100

T
p
u
t

(M
b
p
s)

(a) CWND, RTT, and throughput of ExLL and BBR measured in a UE in a mobile

channel

40 60 80 100 200 400 600 800 1000

Latency (ms)

0

10

20

30

40

50

T
p

u
t

(M
b

p
s)

ExLL
Cubic
BBR
Verus
PropRate
Sprout
Vegas
95-th percentile

(b) Mean and 95-th percentile RTT against the average throughput from ExLL and

other congestion controls in mobile channels

Figure 14. (a) A comparison between ExLL and BBR in
the same mobile channel generated by in-lab LTE testbed,
(b) RTT and throughput performance comparison between
ExLL and other protocols in a mobile channel. ExLL shows
nearly 20 ms less RTT compared to BBR while getting
throughput as much as Cubic.

315

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

similar moment and show similar CWND control resulted from

Eq. 3. Unlike BBR or PropRate, CWND fluctuation from intentional

overbuffering and queue draining does not exist, and thus RTT stays

very closely at around its minimum value. Figure 12 (b) summarizes

RTT against throughput for both ExLL implementations tested with

an eNB with different RTT and throughput variation. It confirms

that both implementations perform comparably, though receiver-

side ExLL performs a little better as expected. Figure 12 (c) shows

another comparison made in a mobile channel whose bandwidth

swings between 100 Mbps to 50 Mbps. Thanks to its responsive

cellular bandwidth estimation, receiver-side ExLL adapts to the

channel very smoothly, hence it shows highly suppressed RTT close

to its minimum RTT. Sender-side ExLL also performs quite closely

to receiver-side ExLL. Figure 12 (d) summarizes the performance of

both ExLL implementations in mobile channels with an eNB with

different mobility scenarios, and it confirms they are comparable.

For brevity, we only present receiver-side ExLL in the remaining

evaluations.

5.2 Performance in Static Channel
In a static LTE network with 90 Mbps bandwidth and 50 ms min-

imum RTT, we compare CWND, RTT, and throughput recorded

while downloading data from a UE with ExLL and BBR in Figure 13

(a). ExLL shows much lower average RTT as well as much lower

RTT variance compared to BBR. We repeat the same experiment

multiple times with other protocols and summarize the through-

put and latency performance in a scatter plot, Figure 13 (b). Each

protocol has a marking in the graph that represents its average

throughput and RTT and another marking connected by a dotted

line, which presents the average throughput and the 95-th percentile

RTT. As Figure 13 (b) tells, ExLL outperforms others. It provides

full throughput as well as a lower and more constrained RTT than

other protocols. Also, the result from sending static amounts of

congestion window as 1.0×BDP that characterizes the ideal perfor-

mance boundary confirms that ExLL operates nearly ideally in a

static LTE channel.

5.3 Performance in Mobile Channel
We then conduct similar experiment over a mobile LTE network

whose bandwidth bounces between 65 Mbps and 15 Mbps while the

minimum RTT stays at around 45 ms. For fair comparison, instead

of testing over real LTE networks, we program the signal attenu-

ator of our in-lab LTE testbed and apply exactly the same mobile

channel to all protocols. Figure 14 (a), capturing CWND, RTT, and

throughput of ExLL and BBR, demonstrates that ExLL has smaller

RTT compared to BBR. Especially whenever the channel gets worse,

ExLL shows extremely efficient adaptation to the dynamic chan-

nel by suppressing RTT significantly better than BBR while not

losing throughput. A scatter plot summarizing the statistics from

repeated runs in the same mobile scenario with various protocols,

Figure 14 (b), evidences that ExLL outperforms other low-latency

protocols by non-negligible margins in all aspects: average RTT,

95-th percentile RTT, and throughput.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

C
W

N
D

(b
y
te

s)

10
6

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

R
T

T
 (

m
s)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

0

50

100

T
p
u
t

(M
b
p
s)

(a) ExLL: 3 Flow Fairness

0 5 10 15 20 25 30 35 40 45 50
0

1

2

C
W

N
D

(b
y
te

s)

10
6

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

R
T

T
 (

m
s)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

0

50

100

T
p
u
t

(M
b
p
s)

(b) BBR: 3 Flow Fairness

Figure 15. ExLL (a) persistently maintains lower latency
while giving throughput fairness to second and third flows
compared to BBR (b).

Table 3: Jain’s Fairness Index from Multi-flow Scenarios

Flow duration: 30 seconds Flow duration: 3000 seconds

of flows ExLL Cubic BBR # of flows ExLL Cubic BBR

2 0.992 0.919 0.809 2 0.990 0.997 0.846

3 0.985 0.891 0.799 3 0.979 0.988 0.882

4 0.979 0.836 0.807 4 0.978 0.976 0.833

5.4 Performance with Multiple Flows
In section 2, we show that cellular devices in LTE networks are

served by separate bearers. To see the impact of self-inflicted delay

(i.e., queueing made in its own bearer), we evaluate the performance

of multiple flows running between a server and a cellular device

over an LTE network of 90 Mbps and 50 ms. Note that BBR is con-

trolled by the server while ExLL here is controlled by the receiver.

Since receiver-side ExLL can turn Cubic flows from any servers

into ExLL-controlled ones, it guarantees that the receiver has only

ExLL-controlled flows in its corresponding bearer. Therefore, based

on the equilibrium data rate of ExLL provided in section 4.1, we

can expect throughput fairness between ExLL-controlled flows.

Figure 15 shows how ExLL and BBR behave when running three

flows that start from different moments. As shown in the figure,

ExLL shows much fairer throughput sharing than BBR. Also, ExLL

shows much more constrained RTT compared to BBR especially

when three flows coexist. ExLL achieves about 93 ms while BBR

exhibits around 137 ms. We further experiment multi-flow scenar-

ios with different number of flows (n) ranging from 2 to 4 under

the same LTE network. We configure that flows start together and

316

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

0 30 60 90
0

5

10

C
W

N
D

(b
y
te

s)

10
5

0 30 60 90
0

100

200

R
T

T
 (

m
s)

0 30 60 90
Time (s)

0

50

100

T
p
u
t

(M
b
p
s)

(a) One ExLL flow adapting to non-cellular or cellular

bottleneck over time

0 30 60 90 120 150
0

1

2

C
W

N
D

(b
y
te

s)

10
6

0 30 60 90 120 150
0

100

200

R
T

T
 (

m
s)

0 30 60 90 120 150
Time (s)

0

50

100

T
p
u
t

(M
b
p
s)

(b) One ExLL flow and two Cubic flows competing in a

non-cellular bottleneck link

0 30 60 90 120 150
0

1

2

C
W

N
D

(b
y

te
s)

10
6

0 30 60 90 120 150
0

100

200

R
T

T
 (

m
s)

0 30 60 90 120 150
Time (s)

0

50

100

T
p

u
t

(M
b

p
s)

(c) One ExLL flow experiencing non-cellular bottleneck

competing with two ExLL flows, that do not experience

non-cellular bottleneck, in a cellular link

Figure 16. (a) ExLL takes control or hands it over to Cubic adaptively under cellular or non-cellular bottleneck for coexistence
with Cubic. (b) ExLL runs as Cubic and achieves fairness when competing with Cubic flows under non-cellular bottleneck.
(c) An ExLL flow experiencing non-cellular bottleneck coexists with two ExLL flows, that do not experience non-cellular
bottleneck, in a cellular link.

last for either 30 or 3000 seconds. Table 3 summarizes the result of

throughput fairness between flows by calculating Jain’s fairness

index [20] that ranges from 1/n (unfairest) to 1 (fairest). The fair-

ness of ExLL outperforms Cubic and BBR for short flows. For long

flows, ExLL shows comparable fairness performance with Cubic

and outperforms BBR.

5.5 Non-Cellular Bottleneck Adaptation
We first demonstrate the adaptability of ExLL to non-cellular bot-

tleneck via the following experiment: we throttle the bandwidth of

access link from our server to the Internet by Ra Mbps for 30 sec-

onds, 500 Mbps for 30 seconds, and Ra Mbps again for 30 seconds

via netem [16] and let a cellular receiver connected to 60 Mbps

cellular channel download data with ExLL. We present CWND,

RTT, and throughput from the experiment in Figure 16(a) with Ra
of 10 Mbps and 30 Mbps. The figure shows that for the first 30

seconds where non-cellular bottleneck exists, ExLL does not exit

from its observation mode and lets Cubic in the server govern the

control. For the next 30 seconds where the bottleneck moves to

cellular link, ExLL takes control over Cubic. Then, for the last 30

seconds where the bottleneck moves back to the non-cellular link

from which packet drops occur, ExLL stops controlling (i.e., stops

updating RWND) and lets Cubic take control as explained in Sec-

tion 4.6. Figure 16(a) confirms that ExLL adapts well to non-cellular

or cellular bottleneck irrespective of Ra values.

We then test the adaptability of ExLL inmore complicated scenar-

ios in which 1) a cellular receiver downloads from our server using

ExLL via a non-cellular bottleneck link (40 Mbps) that is shared

with two Cubic flows (say Cubic 1 and 2) connecting different wired

servers and via a cellular link (100 Mbps) and the non-cellular bot-

tleneck later disappears, and 2) a cellular receiver downloads one

ExLL flow (say ExLL 1) from our server which experiences a non-

cellular bottleneck (40 Mbps) and downloads two more ExLL flows

(say ExLL 2 and 3) from another server whose bottleneck forms at

the cellular link (100 Mbps). In both scenarios, we let flows start

sequentially with the interval of 30 seconds and last commonly

for 90 seconds as shown in Figure 16(b) and Figure 16(c), respec-

tively with CWND, RTT, and throughput information. Figure 16(b)

shows that when the ExLL flow joins the non-cellular bottleneck

which was already occupied by two Cubic flows, it runs as Cubic

to keep the fairness, and as soon as the bottleneck disappears, it

turns into ExLL and fully exploits the cellular link with low latency.

Figure 16(c) shows that the ExLL flow experiencing a non-cellular

bottleneck (ExLL 1) runs as Cubic, but it does not starve by other

ExLL flows (ExLL 2 and 3) competing with ExLL 1 in the cellular

link as well as it does not make those ExLL flows (ExLL 2 and 3)

starve.

6 APPLICATION PERFORMANCE
In this section, we evaluate the improvement in quality of experi-

ence (QoE) from adopting ExLL in web browsing scenario through

QoE metrics: page loading time (PLT) and Speed Index [31]. Unlike

other low-latency congestion controls, thanks to its receiver-side

design, ExLL allows us to immediately test such improvement from

commercial servers running Cubic without touching the servers.

In order to measure PLT in a systematic way, we extract the event

timing information from Android Chrome browser using Chrome

developer tool [11]. We define PLT by the time interval from the mo-

ment of requesting a new page,TnaviдationStar t , to the moment of

receiving the last byte of the requested page, Tr esponseEnd . Speed
Index is a popular page load performance metric that quantifies how

fast contents of a page are visibly populated over time. Speed Index

can also be obtained from Android Chrome browser using Chrome

developer tool [11]. It is known that low-latency congestion con-

trols do not reduce the download duration of a given data because

the duration depends more on throughput rather than latency [21].

However, low-latency congestion control can still demonstrate its

benefit when the bottleneck experiences bufferbloat. To capture

such benefit, in Figure 17(a), we compare PLT in an Android de-

vice for loading three popular web sites with and without ExLL

while updating or not updating applications from Google Play Store.

When browsing runs only, improvement in PLT with ExLL is minor.

317

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece S. Park et al.

54% 71%

74%

(a) PLT as Tr espondEnd −TnaviдationStar t

15%

42%

46%

(b) Speed Index

Figure 17. (a) Average PLT and (b) Speed Index with 95%
confidence interval measured from three popular web sites
with or without application updates. ExLL substantially im-
proves PLT and Speed Index especially when application up-
dates coexist.

But when update coexists, ExLL manages PLT nearly the same

as that without concurrent update. In such a case, ExLL reduces

PLT significantly by about 54%, 71%, and 74% from three websites

respectively. As shown in Figure 17(b), we can also observe the

improvement of ExLL with Speed Index, which is by about 15%,

42%, and 46% from three websites, respectively.

7 RELATEDWORK
There have been many proposals aiming at achieving low latency

and high throughput together. Below we categorize them into three

groups by their targeting networks: 1) the Internet, 2) datacenter,

and 3) cellular networks.

Low latency for the Internet:
There have been delay-based congestion control protocols such

as Vegas [8] and FAST [32], which shed light on designing a protocol

that achieves low latency. However, the difficulty involved in tuning

parameters across different networks as well as their coexistence

issue with loss-based congestion controls have limited their wide

deployment. One of themost recent proposals, BBR [10] implements

the adaptability by introducing four modes of operation: start-up,

drain, probe-bandwidth, and probe-RTT, to estimate time-varying

network bandwidth. By controlling its CWND to be close around

the estimated BDP, BBR gets substantial improvement in the packet

latency. Recently proposed Copa [6] adjusts its CWND towards the

target rate which is based on the observed queueing delay under

Markovian packet arrival assumption for a range of networks. Its

throughput, however, is shown to be much lower than those of

both CUBIC and BBR in cellular networks.

Low latency for datacenter networks: In datacenter networks,

pHost [12] uses pull-based packet scheduling using token packets

generated from receivers in order to minimize the flow completion

time. However, it assumes that the congestion in the core is free and

the size of flows activated is known in advance. ExpressPass [19]

proposes a receiver-driven congestion control in which a sender

explicitly controls packet transmission depending on credit packets

sent by a receiver. This requires not only network switches with a

specific function to adjust the credit packets to be transmitted to

the available bandwidth but also additional overhead for sending

the credit packets.

Low latency for cellular networks:DRWA [21] proposes a receiver-

based congestion control for cellular devices, which roughly con-

trols RWND inversely proportional to the ratio between the cur-

rent RTT and minimum RTT so that the CWND of TCP sender is

cropped by the RWND of TCP receiver. CQIC [24] presents a cross-

layer congestion control by directly estimating the channel capacity

based on physical layer information (i.e., channel quality indication

(CQI) and discontinuous transmission ratio) of the cellular device.

Sprout [33] models the cellular network bandwidth as random walk

and performs a short-term prediction on the number of packets

that can be transferred by the network without incurring additional

queueing delays. Verus [36] devises a curve fitting-based delay

profiling which maps resulting RTT values into the correspond-

ing CWNDs. Verus finds a relationship between RTT increase and

its CWND changes to decide operating points of achieving lower

RTTs. CLAW [34] harnesses limited PHY-layer statistics available

from LTE smartphones with an analytical model to estimate the

achievable cellular bandwidth and uses it to reduce Web loading

time rather than minimizing transport-layer latency. PropRate [23]

proposes to directly monitor the bottleneck buffer size in cellular

networks by referring to the increase of one-way delay. PropRate

also utilizes two modes of operation like BBR which fill up and

drain the bottleneck queue to balance latency and throughput.

8 CONCLUSION
In this work, we proposed ExLL, a new low-latency congestion con-

trol tailored for cellular networks, that closely achieves minimum

possible latency even in dynamic cellular channels while retaining

throughput as much as Cubic. ExLL not only leverages cellular

network characteristics such as RB allocation patterns in down-

link scheduling and SR periodicity in uplink scheduling but also

suggests a refined equation-based congestion control from FAST.

Our implementation using Android smartphones shows that ExLL

outperforms existing low-latency congestion control algorithms in

both static and dynamic channels of LTE networks.

9 ACKNOWLEDGEMENT
This work was supported by IITP grants funded by the Korea gov-

ernment (MSIT) (No. 2015-0-00278, Research on Near-Zero Latency

Network for 5G Immersive Service, No. 2017-0-00562, UDP-based

Ultra Low-Latency Transport Protocol with Mobility Support, No.

2017-0-00692, Transport-aware Streaming Technique Enabling Ul-

tra Low-Latency AR/VR Services, and No. 2018-0-00693, Devel-

opment of An Ultra Low-Latency User-Level Transfer Protocol),

UNIST grant (No. 1.180038.01), and the NSF under Grant CNS-

1525435. K. Lee is the corresponding author.

318

ExLL: An Extremely Low-latency Congestion Control CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

REFERENCES
[1] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved

Universal Terrestrial Radio Access Network (E-UTRAN); Overall description (TS
36.300 v14.6.0 Release 14). (2017). http://www.3gpp.org/dynareport/36300.htm.

[2] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

channels and modulation (TS 36.211 v14.6.0 Release 14). (2017). http://www.3gpp.

org/dynareport/36211.htm.

[3] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

layer procedures (TS 36.213 v14.6.0 Release 14). (2017). http://www.3gpp.org/

dynareport/36213.htm.

[4] 3GPP. 2017. General Packet Radio Service (GPRS) enhancements for Evolved

Universal Terrestrial Radio Access Network (E-UTRAN) access (TS 23.401 v14.7.0
Release 14). (2017). http://www.3gpp.org/dynareport/23401.htm.

[5] N. A. Ali, A. E. M. Taha, and H. S. Hassanein. 2013. Quality of Service in 3GPP

R12 LTE-Advanced. IEEE Communications Magazine 51, 8 (2013), 103–109.
[6] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. In Proc. of USENIX NSDI.
[7] Praveen Balasubramanian. 2017. Updates on Windows TCP.

(2017). https://datatracker.ietf.org/meeting/100/materials/

slides-100-tcpm-updates-on-windows-tcp.

[8] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP

Vegas: New Techniques for Congestion Detection and Avoidance. In Proc. of ACM
SIGCOMM.

[9] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. 2013. Downlink

Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey.

IEEE Communications Surveys Tutorials 15, 2 (2013), 678–700.
[10] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
14, 5 (2016), 50.

[11] Google Developers. 2017. Chrome DevTools. (2017). https://developers.google.

com/web/tools/chrome-devtools/.

[12] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-

nasamy, and Scott Shenker. 2015. pHost: Distributed Near-Optimal Datacenter

Transport Over Commodity Network Fabric. In Proc. of ACM CoNEXT.
[13] J. Gettys. 2011. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing

15, 3 (May-June 2011), 96.

[14] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata

Sen. 2016. Understanding On-device Bufferbloat for Cellular Upload. In Proc. of
ACM IMC.

[15] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a New TCP-friendly

High-speed TCP Variant. ACM SIGOPS Operating Systems Review 42 (July 2008),

64–74. Issue 5.

[16] S. Hemminger. 2005. Netem - emulating real networks in the lab. In Proc. of the
Linux Conference.

[17] Ravi Netravali Hongzi Mao and Mohammad Alizadeh. 2005. Netem - emulating

real networks in the lab. In Proc. of the Linux Conference.
[18] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley

Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE:

Effect of Network Protocol and Application Behavior on Performance. In Proc. of
ACM SIGCOMM.

[19] Keon Jang Inho Cho and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded

Congestion Control for Datacenters. In Proc. of ACM SIGCOMM.

[20] Raj Jain. 1990. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley and

Sons.

[21] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling

bufferbloat in 3G/4G networks. In Proc. of ACM IMC.
[22] Chris Johnson. 2012. Long Term Evolution In Bullets. CreateSpace Independent

Publishing Platform.

[23] Wai Kay Leong, Zixiao Wang, and Ben Leong. 2017. TCP Congestion Control

Beyond Bandwidth-Delay Product for Mobile Cellular Networks. In Proc. of ACM
CoNEXT.

[24] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker, Alex C. Snoeren, and Andreas

Terzis. 2015. CQIC: Revisiting Cross-Layer Congestion Control for Cellular

Networks. In Proc. of ACM HotMobile.
[25] S. Mohan, R. Kapoor, and B. Mohanty. 2011. Latency in HSPA Data Networks.

Technical Report. Qualcomm. https://goo.gl/kiEQrJ

[26] NextEPC. 2017. Open source implementation of EPC. (2017). https://www.

nextepc.org.

[27] Afif Osseiran, Jose F. Monserrat, and Werner Mohr. 2011. Mobile and Wireless
Communications for IMT-Advanced and Beyond. Wiley, West Sussex, United

Kingdom.

[28] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis. 2016. 5G-Enabled Tactile

Internet. IEEE Journal on Selected Areas in Communications 34, 3 (March 2016),

460–473.

[29] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu.

2018. Supporting Mobile VR in LTE Networks: How Close Are We? Proc. ACM

Meas. Anal. Comput. Syst. 2, 1 (April 2018), 8:1–8:31.
[30] Jeanette Wannstrom. 2013. Carrier Aggregation explained. (June

2013). http://www.3gpp.org/technologies/keywords-acronyms/

101-carrier-aggregation-explained.

[31] WebPagetest. 2018. WebPagetest Documentation. (2018). https://sites.google.

com/a/webpagetest.org/docs/.

[32] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. 2006. FAST TCP:

Motivation, Architecture, Algorithms, Performance. IEEE/ACM Transactions on
Networking 14 (December 2006), 1246–1259. Issue 6.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic

forecasts achieve high throughput and low delay over cellular networks. In Proc.
of USENIX NSDI.

[34] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web

Loading Using Cellular Link Information. In Proc. of ACM MobiSys.
[35] Swarun Kumar Xiufeng Xie, Xinyu Zhang and Li Erran Li. 2015. piStream:

Physical Layer Informed Adaptive Video Streaming Over LTE. In Proc. of ACM
MobiCom.

[36] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and

Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular

Networks. In Proc. of ACM SIGCOMM.

[37] Xincheng Zhang. 2018. LTE Optimization Engineering Handbook. Wiley, West

Sussex, United Kingdom.

319

http://www.3gpp.org/dynareport/36300.htm
http://www.3gpp.org/dynareport/36211.htm
http://www.3gpp.org/dynareport/36211.htm
http://www.3gpp.org/dynareport/36213.htm
http://www.3gpp.org/dynareport/36213.htm
http://www.3gpp.org/dynareport/23401.htm
https://datatracker.ietf.org/meeting/100/materials/slides-100-tcpm-updates-on-windows-tcp
https://datatracker.ietf.org/meeting/100/materials/slides-100-tcpm-updates-on-windows-tcp
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://goo.gl/kiEQrJ
https://www.nextepc.org
https://www.nextepc.org
http://www.3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained
http://www.3gpp.org/technologies/keywords-acronyms/101-carrier-aggregation-explained
https://sites.google.com/a/webpagetest.org/docs/
https://sites.google.com/a/webpagetest.org/docs/

	Abstract
	1 Introduction
	1.1 Exploiting Cellular Network Characteristics for Protocol Design
	1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols
	1.3 ExLL Contributions

	2 Observations
	2.1 Measurement Setup
	2.2 Cellular Network Characteristics

	3 ExLL's Network Inference
	3.1 Cellular Downlink
	3.2 Cellular Uplink

	4 ExLL Design
	4.1 Control Algorithm
	4.2 State Transition
	4.3 MTE Calculation
	4.4 mRE Calculation
	4.5 Exit from Observation to Control
	4.6 Recovery from Loss or Timeout

	5 Evaluation
	5.1 Receiver- vs. Sender-side ExLL
	5.2 Performance in Static Channel
	5.3 Performance in Mobile Channel
	5.4 Performance with Multiple Flows
	5.5 Non-Cellular Bottleneck Adaptation

	6 Application Performance
	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

