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ABSTRACT

Current COTS WiFi based work on wireless motion sensing ex-
tracts human movements such as keystroking and hand motion
mainly from amplitude training to classify different types of mo-
tions, as obtaining meaningful phase values is very challenging
due to time-varying phase noises occurred with the movement.
However, the methods based only on amplitude training are not
very practical since their accuracy is not environment and location
independent. This paper proposes an effective phase noise calibra-
tion technique which can be broadly applicable to COTS WiFi based
motion sensing. We leverage the fact that multi-path for indoor
environment contains certain static paths, such as reflections from
wall or static furniture, as well as dynamic paths due to human
hand and arm movements. When a hand moves, the phase value
of the signal from the hand rotates as the path length changes and
causes the superposition of signals over static and dynamic paths
in antenna and frequency domain. To evaluate the effectiveness of
the proposed technique, we experiment with a prototype system
that can track hand gestures in a non-intrusive manner, i.e. users
are not equipped with any device, using COTS WiFi devices. Our
evaluation shows that calibrated phase values provide much rich,
yet robust information on motion tracking — 80th percentile angle
estimation error up to 14 degrees, 80th percentile tracking error up
to 15 cm, and its robustness to the environment and the speed of
movement.

CCS CONCEPTS

« Hardware — Digital signal processing; Wireless devices;
Sensor devices and platforms;

KEYWORDS

Phase calibration; Wireless sensing; Central frequency offset; CFO;
COTS WiFi

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys, November 6-8, 2017, Delft, The Netherlands

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5459-2/17/11.

https://doi.org/10.1145/3131672.3131695

Youngbin Im
University of Colorado Boulder
Boulder, Colorado
youngbin.im@colorado.edu

Sangtae Ha
University of Colorado Boulder
Boulder, Colorado
sangtae.ha@colorado.edu

ACM Reference Format:

Jincao Zhu, Youngbin Im, Shivakant Mishra, and Sangtae Ha. 2017. Cali-
brating Time-variant, Device-specific Phase Noise for COTS WiFi Devices.
In Proceedings of The 15th ACM Conference on Embedded Networked Sensor
Systems, Delft, The Netherlands, November 6-8, 2017 (SenSys), 12 pages.
https://doi.org/10.1145/3131672.3131695

1 INTRODUCTION

Human motion and position tracking are the core technologies
enabling a wide range of useful applications, including health care,
smart home, security, gaming, and so on. As a result, there is a large
body of research addressing this problem. This includes training-
based, sensor-based which uses built-in sensors such as accelerome-
ter and gyroscope [18], and signal-variation based technologies [10]
that rely on variations in different characteristics of a signal, e.g.
amplitude to detect motion. A key limitation of sensor-based tech-
nologies is that they require the users to be equipped with sensor
devices, e.g. smartphones or wearables, and hence are intrusive
in nature. Prior work in signal-variation based technologies has
investigated the possibility of leveraging several different types
of signals, such as acoustic signal [13, 24], visual light signal [4],
Kinect [1], and Leapmotion [12] for human motion sensing and
tracking. In particular, radio frequency (RF) based sensing technolo-
gies have gained significant attention recently due to the advantage
of RF being able to penetrate objects over other types of signals,
and thus work in non-line-of-sight (NLOS) situations.

RF-based sensing technologies can be divided into two cate-
gories, RF-based active sensing, and RF-based passive sensing. The
RF-based active sensing [21] is intrusive in nature since users must
carry one or more RF devices. The RF-based passive sensing, on the
other hand, does not require users to be equipped with any device
and hence is non-intrusive in nature, and thus is more attractive.
However, building an RF-based passive sensing technology is very
challenging. One category of RF-based passive sensing technologies
is to make use of dedicated devices such as software-defined radios
(SDRs). For example, [3] allows a user to track moving humans
through walls and behind closed doors using WiFi signals, [2] uses
SDR to generate the wide band frequency-modulated continous
wave (FMCW) signal to detect a human, and WiDeo [7] shows
the possibility of fine-grained motion tracking with WiFi technol-
ogy. Another category is to use commercial-off-the-shelf (COTS)
WiFi devices for RF-based passive sensing. Because of the high
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Figure 1: Phase noise consisting of SFO, PDD, and CFO is
added to the ground-truth signal.

cost of dedicated SDR devices, leveraging the COTS WiFi device is
much more attractive since WiFi NIC cards are much cheaper, more
pervasive and easily available. Indeed, researchers have begun to
investigate WiFi NIC cards for passive sensing.

With Channel State Information (CSI) [5] obtained from COTS
WiFi devices, several interesting applications ranging from local-
ization [8] to sensing [9] and activity tracking [10] have been de-
veloped. A key limitation of these applications is that they rely
mostly on training with amplitude values, since it is very difficult
to extract clean phase values in the presence of extreme phase
noise from cheap WiFi NIC cards with poor oscillators. For exam-
ple, [9, 19] and [10] recognize human heartbeats and keystrokes,
respectively, through training the amplitude values of the CSI. As a
result, these methods are not time and environment consistent [10].
Even a slight change in the direction or location of the user may
require an additional cycle of training, which is time consuming
and impractical.

Although some of the recent works [16, 19] are not training
based, they have their own limitations. For example, WiDraw [16]
harnesses the Angle-of-Arrival (AoA) values of incoming wireless
signals at the mobile device to track the user’s hand trajectory with
a large number of APs (30 Tx/Rx in their experiment) surrounding
the mobile device. The method proposed in [19] to measure the
human respiration using the COTS WiFi device is only applicable
to small, regular movement like respiration (i.e, one directional
movement), and cannot be used to track more complex motions
such as hand movement. CARM [23] uses the CSI change speed to
detect simple push and pull-type motions, not complex ones.

Because of the phase noise occurring during the movement, none
of the existing work using COTS WiFi devices leverage the phase
values except SpotFi [8]. However, the method used by SpotFi [8]
for device localization cannot be used for passive sensing. SpotFi
deals only with static paths and finds the best linear fit of the
unwrapped CSI phase to eliminate the phase noise due to Sampling
Frequency Offset (SFO). Thus there is no need to calibrate the
Central Frequency Offset (CFO). Chronos [17], on the other hand,
requires to measure the CSI on the both side of the link to eliminate
the CFO, which needs modification of the driver of WiFi NIC to
piggy back the CSI on each side.

Challenges. We briefly describe the challenges of using the
COTS WiFi devices for RF-based passive sensing:
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Figure 2: Dynamic path is created when a hand moves while
static path does not change.

o The first challenge of COTS WiFi is the presence of phase
noise. As shown in Figure 1, the phase noise includes the
SFO, Packet Detection Delay (PDD) and CFO, which are
time variant across different devices. SFO and PDD have the
same effect and we use SFO to present SFO and PDD. Unlike
the SFO and PDD which vary over two CSI matrices (i.e.,
vary over time), the CFO has the same random phase shift
across subcarriers and antennas. As a result, we are not able
to extract the CSI change by subtracting two CSI matrices.
Our question is then how can we calibrate the CFO to extract
the ground-truth.

e The second challenge is related to the strong power of a
static path, which makes it hard to extract the weak path
signal created with movement. Figure 2 shows the dynamic
path created during hand movement. In this case, we do not
have the resolution of every path of the channel, and as a
result, the final path resolution may mix the dynamic path
with static paths.

o The third challenge is with the limited number of antennas.
In order to achieve good resolution, Wideo [7] uses a large
number of antenna arrays using SDR. This would result in a
bulky and expensive device. Furthermore, common COTS
WiFi NIC cards only have three antennas at the most.

Our approach. To effectively deal with the phase noise over
dynamic path (mentioned in the first challenge), we leverage the
phenomenon of sinusoid wave on amplitude and phase values upon
the dynamic path length change. To remove phase noise and cali-
brate the CFO of the CSI for dynamic path when a motion occurs,
we first extract the amplitude of dynamic path. Then we get the
dynamic path CSI phase difference according to the triangle rela-
tionship of measured CSI, static path CSI vector and dynamic path
CSI vector. The method extracting the dynamic path from the static
path also solves the second challenge. Note that although [24] also
extracts dynamic path with acoustic signals, it does not need to
deal with the phase noise due to CFO, resulting in its limited ap-
plicability to COTS WiFi devices. To deal with the third challenge,
we combine both frequency and antenna domains to increase the
accuracy, which is inspired from SpotFi [8].
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Contributions. To the best of our knowledge, this is the first
work that calibrates the CFO to remove the phase noise occurred
with movement on COTS WiFi devices. By removing the phase
noise, we are able to use both amplitude and phase values that
occur with human movement, and therefore no training is needed
to classify different movements. Moreover, the proposed method
can obtain the information of dynamic path by removing the in-
formation of static path, enabling more environment independent
applications. This method is general enough that it can be used for
several existing COTS WiFi-based sensing and tracking applica-
tions. As a proof-of-concept of exploiting this CFO calibration, we
prototype a system that tracks human hands gestures, which are
2D motions.

In summary, our contributions are as follows:

(1) We propose a method to effectively calibrate the COTS WiFi
phase noise when there is a dynamic path with movement.

(2) To demonstrate the effectiveness of the proposed phase noise
cancellation, we design and implement the prototype of a
2D hand tracking system with COTS WiFi devices, and show
that the system can effectively isolate the CSI of dynamic
path from the noisy CSI measured.

Our evaluation with the prototype shows that calibrated phase
values provide much rich, yet robust information on motion track-
ing; the tracking accuracy is robust to the environment and the
speed of movement while providing fine-grained tracking accuracy.

The rest of the paper is organized as follows. In Section 2, we
provide a summary of the related work. Then we briefly describe
the background of some of the key wireless technologies that we
have used in this paper in Section 3. Section 4 explains how we
calibrate CSI phase noise, while Section 5 describes the design of our
prototype system. We present the implementation and evaluation
of our prototype in Section 6. We discuss the limitations of the
proposed approach in Section 7, before concluding the paper in
Section 8.

2 RELATED WORK

Non-RF based motion tracking. Motion tracking has drawn a
lot of attention from research communities. Sensor-based motion
detection [1, 12] has been widely used in games, but it requires use
of dedicated devices. Vision or light based motion tracking uses
light sensors or cameras to track human gesture or movement [4].
Such systems require line-of-sight setup from the device to the
subject. Acoustic signal based sensing is attractive because of its
short wavelength providing higher accuracy on measurements.
[13, 24] use acoustic signals generated by cell phone to track hand
movement with an accuracy of 3.5 mm. [11] uses a cellphone as
the mouse over the air by letting it measure the sound generated
by the speakers deployed nearby. However, acoustic signals do not
work in non-line-of-sight scenarios.

RF-based Active sensing. Both RF-IDraw [21] and Tagoram [27]
use RFID for tracking purpose. The advantage is that the tag is low
cost and battery free. However, these systems require a dedicated
RFID reader, which is expensive. RF-IDraw can achieve centimeter-
level accuracy while Tagoram achieves an accuracy of less then
1cm. The COTS WiFi based system is cheaper and more pervasive
than RFID-based systems. SpotFi [8] and Chronos [17] calibrate the
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Table 1: RF-based sensing technologies

Work Training?  SDR/COTS  Active?
RF-IDraw [21] No RFID Active
Matrack [25] No SDR(60GHz) Passive
WiDeo [7] No SDR Passive
SpotFi [8] No COTS Active
Respiration [19] Yes COTS Passive
CARM/Wikey [10, 23] Yes COTS Passive
WiDraw [16] No 30 COTS Passive
Widir [26] No COTS Passive
LiFS [20] No COTS Passive
Gait [22] No COTS Passive

phase of static CSI in order to track a wireless node. However, such
methods can not be used when there are moving objects around
the subject, since the dynamic path CSI is not extracted from the
measured CSI.

RF-based Passive sensing. Device-free sensing provides more
flexibility, so is more attractive. Tadar [28] uses RFID tags as an
antenna array and tracks indoor activity from a location separated
by a wall in between. mTrack [25] can track small movements like
a pen movement by using millimeter wave of 60 Ghz. Wideo [7]
provides a highly precise tracking capability with WiFi technology,
but uses SDR, which makes it more difficult to deploy compared to
the COTS WiFi devices.

The COTS WiFi platform is more attractive due to its low price
and high availability of components compared to non-COTS based
solutions. We can divide COTS WiFi based passive tracking solu-
tions into two categories, training-based and non-training-based.
Training based solutions leverage machine learning to identify dif-
ferent motions or activities by measuring the pattern of CSI change.
Wikey [10] is able to identify key stroking with high accuracy.
Gait [22] can extract human walking patterns to identify different
persons. However, training-based solutions have one key drawback.
They are highly dependent on training and are highly environment
dependent. Thus, these solutions require completely new training
whenever there is an even slight change in the environment.

Non-training based solutions, on the other hand, do not require
training. For example, [19] can detect respiration movement with
some constraints on human body orientation and relative position
to the WiFi nodes. Widir [26] can track human walking direction by
analyzing phase change dynamics from multiple WiFi subcarriers.
LiFS [20] uses power fading model to passively localize human
using the fact that human body blocks WiFi signal in different ways
at different locations. CARM [23] models the path length change
using signal amplitude fluctuations and uses the CSI-speed model
to map the path length changes to different activities. However,
none of these approaches can extract dynamic path CSI from the
measured CSI for a finer grained sensing, such as human hand
movement tracking. Although Widraw [16] is able to track a human
hand for an application like drawing, its precision is restrictively
dependent on the high density deployment of wireless access points.
We summarize the related work using RF-based sensing in Table 1.
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Figure 4: Superposition of signals over static paths and dy-
namic paths is illustrated. Whether the signals are added
constructively or destructively is decided by the relative
phase differences between these signals.

3 BACKGROUND AND OBSERVATION

In this section, we describe the background of the wireless tech-
nologies we have used. In particular we present key observations
and describe how the amplitude and phase values of CSIs measured
in consecutive period of time can be used in calibrating phase noise.

3.1 CSI measurements

Today’s WiFi radios use Orthogonal Frequency-Division Multi-
plexing (OFDM) modulation and transmit signals across orthogo-
nal subcarriers at different frequencies. Each transmitted symbol
X(f,t) is modulated on a subcarrier index f at time ¢, and the
received symbols vector for a receiving antenna array is Y(f,t) =
[Y1(f, 1), Ya(f, 1), ..., Yar (£, £)] T, where Y; (£, t) is the received sym-
bol on it" antenna, and M is number of antennas. Y(f, t) depends
on the wireless spatial channel H(f, t):

Y(f.0) = H(f, 1) X X(f. 1)
H(f,t) = [Hy(f. 1), Ho(f, ), .. Hu (f. )]
The CSI matrix reported by a WiFi NIC at time t is the estima-
tion of H(f, t) over different frequencies f (i.e., subcarriers) for an

antenna array, meaning the columns correspond to the estimated
spatial channel vector H(f, t) for different subcarriers:

1
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cSIMN = [H(1,1), H(2,1), ..., H(N, )]
Hi(1,t) Hi(2,t) Hi(N, t)
| H(L) Ha2) BN | @
HM&L t) HM&Z’ t) Hpy (N, t)

When multiple paths co-exist, H can be expressed as a summa-
tion of all the paths, which is called wave superposition:

L
H(ft) = ) [ay (1) e 72710 x @]
I=1
1
e—j27rdcos(a1) (3)
efj27r2dcos(zx1)

e—j27r(M—1)dcos(ocl)

In other words, there will be a ¢ /27(m=1)dcos(a1) phase shift
for the m*" antenna on path [ which has AoA of a;, where a;, 7;
represent the attenuation and time of flight of path [, respectively.
A receiver receives the combination of reflections from multiple
regions in space at each of its antennas, and signals with different
wavelengths over different paths cancel/strengthen each other.

However, the measured CSI contains the SFO and CFO, which
make the CSI values look random. The offset is expressed as: —27 f5(n—
1)ts — 27 fp, on the n' h subcarrier, where fs is the bandwidth be-
tween two adjacent subcarriers in the reported CSI for the NIC, z¢
and fp are the PDD+1/SFO and CFO, respectively. Therefore, the
measured CSI at the subcarrier f is:

H(f) = H(f)e 2o (n=1ms=2xfc (4)

As shown in Eq. 4, the measured CSI does not provide the correct
phase value of the channel, but the amplitude and phase difference
across antennas is still reliable.

3.2 CSI amplitude changes

On the commodity WiFi devices, the CSI can be exported by leverag-
ing the open source CSI tool[5]. For example, on each transmission,
amatrix of CSI measurements over 30 subcarriers and 3 antennas is
exported by the CSI tool for the Intel 5300 NIC with three receiving
antennas.

Governed by the principle of superposition of waves, signals
reflected by human motion may add constructively or destructively
with WiFi signals traveled through other paths, e.g., the Line-Of-
Sight (LOS) path. Identiying whether these WiFi signals are added
constructively or deconstructively could be determined by the rela-
tive phase difference between these signals.

Such phenomena are a characteristic of Fresnel zone [6]. Fresnel
zone (illustrated in Figure 3) is a series of ellipsoidal along which the
propagation path length from the transmitter to the reflector then
to the receiver is constant. So when the reflector crosses different
zones in one direction, the phase value rotates and ends up arriving
out of phase or in phase with the static path signal periodically. As
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Figure 5: The phase difference between antennas for differ-
ent scenarios are shown. We observe the significant changes
in phase differences when a hand moves.

illustrated in Figure 4, when dynamic path and static path vectors on
IQ plane are in the same direction, the amplitude is maximum, while
the amplitude is minimum in reverse direction. Such phenomenon
is due to the fact that a static path is stable with larger power, and a
dynamic path is more dynamic with much weaker power. The static
path decides the long term base wave shape, while the dynamic
path decides the short time wave shape.

Among previous passive WiFi sensing works, [19] identified each
CSI amplitude change cycle in order to obtain a breathing cycle,
[26] leverages the frequency diversity of Fresnel zone to identify
walking direction, CARM[23] uses a machine learning methodology
to classify different human activities, and [22] showed that it can
distinguish human gaits. While these works exploit the amplitude
change for different sensing applications, we instead compute the
relative phase value of dynamic path over static path.

3.3 CSI phase difference

Although the measured CSI phase for individual subcarrier looks
totally random due to the phase offset, the phase difference is stable.
Through measurement experiments, we observe that the phase dif-
ference of a particular subcarrier across different antennas shows
distinctive patterns for different movements as shown in Figure
5. We can clearly see how the phase value difference changes ac-
cording to human breathing and hand movement. PinLoc [15] also
leveraged phase difference across multiple subcarriers to obtain
location signatures. But their location signatures require mapping
and training, while our work is to eliminate the use of training. One
important observation is that the phase difference is stable over
time with no movement, which means when the phase difference
changes significantly, it is mainly due to a movement.

As a result, if we assume that the static path does not change
over time (Figure 2), the peak and valley points of CSI amplitude
will always have the same phase values with the phase values of
the static path. We can use this observation to calibrate the CFO,
which is explained in Section 4. Even though there will be a drift
over time, as static path will slowly change, such drift is acceptable
as long as the dominant path does not change.

4 CSI CALIBRATION

As shown in Figure 2, to track a motion (e.g., hand movement),
we first need to extract the dynamic path CSI corresponding to
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the motion. Previous work using acoustic signals [24] can not be
applied to COTS WiFi signals, as there is no CFO when an acoustic
signal is transmitted and received by the speaker and microphone
on the same device which share the same oscillator. In our case,
while COTS WiFi signals have too much phase noise, we are able
to calibrate the phase values of the CSI with dynamic path by
leveraging the phase differences and amplitude changes upon a
hand move. Then we extract the dynamic path CSI for hand tracking.
The steps are illustrated in the following subsections.

4.1 SFO calibration

The SFO is introduced as a linear phase shift across the subcarriers.
More specifically, there is a phase shift of =27 f5(k — 1)75 on sub-
carrier k, while 7, is the delay caused by SFO, which varies across
packets. We use a linear fit as is done in SpotFi [8]. After this cali-
bration, the linear shift between different subcarriers will be gone
and thus free from SFO variations. Note that the phase difference
between antennas is not affected by SFO, but the subcarriers are.

4.2 CFO calibration

After SFO calibration, we have to adjust the CFO, which is particu-
larly challenging for dynamic path since the CFO is different for
different measurements. The CFO, however, is consistent in one
measurement across all subcarriers and across different antennas.
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Our calibration mechanism is based on two observations. First,
when the hand moves in one direction, the path length of dynamic
path reflected by the hand will change accordingly. As a result we
can observe a sinusoid waved CSI amplitude (Figure 6b) with the
unique pattern of phase differences (Figure 6a) between subcarriers.
With the assumption that the peak and valley amplitude values are
due to the in-phase and out-phase between the static path and the
dynamic path, we can say that the phase values of the dynamic
path at these two critical points are the same as the ones in the
static path. In other words, the phase value where the amplitude is
maximum has the same value with the static path, while the phase
value where the amplitude is minimum has the phase value of static
path minus 7 (Figure 7). And we could infer the amplitude of the
static path and the dynamic path according to this observation and
identify the angle between static path vector and dynamic path
vector.

Second, in addition to the amplitude fluctuation, we also have the
phase difference of measured CSI across antennas and subcarriers.
We have the observation that the phase difference across subcarriers
and antennas are more reliable than directly calculating phase
values of all the subcarriers. Figure 8 shows a comparison of results
for the dynamic path AoA estimation algorithm with and without
taking phase difference into account. The measured phase difference
will significantly improve the accuracy.

In summary, to calibrate the CFO, we first assume that the phase
of the static path is constant. We then leverage the amplitude fluc-
tuation to infer the dynamic path amplitude and the triangle rela-
tionship between raw CSI vector, static path vector and dynamic
path vector. Finally, we get the dynamic path CSI phase difference
relative to the reference phase difference of the measured raw CSI.

Algorithm 1 shows the pseudo code of our algorithm which
extracts the dynamic path CSI. The algorithm is also illustrated in
Figure 9. We first calculate the amplitude of static path and dynamic
path according to the fluctuation of measured CSI amplitude, then
by comparing phase difference between subcarriers of measured
CSI, we get the calibrated phase values for both the static and
dynamic paths.

Extracting the amplitude of the dynamic path and static
path, respectively. From Figure 4, we can see that the amplitude
of the CSI at the maximum point is the summation of the static

J. Zhu et al.

Algorithm 1: Algorithm for extracting the CSI on dynamic
path by calibrating the CFO.
Input: SFO calibrated static CSI measured during static time Hg, SFO
calibrated CSI: H(k, f, t), k: antenna index 1 : K, f: subcarrier index
1:F,t=1:T is sample index
Output: Hy, CFO
Initialize: a: the smooth average parameter, [X (k, f, n) I(k, f, n)]
list of amplitude extreme point and sample index, n=0;

/* get amplitude of dynamic path and static component®/
for each subcarrier stream (k,f) do
A(t) = [H(k, £, )] ;
fort=1toT do
if A(t)is a local maxima or minima then

n=n+1;

E(n)=A(t);

Ast(n) = (E(n = 1) + E(n))/2;

Aar(n) = |E(n—1) - E(n)|/2;
/*smooth averaging */
As(t) = (1 - a)As(t - 1) + aAst(n);
Aa(t) = 1 - a)Aq(t = 1) + aAg(n);
/*angle between static path vector and measured channel
vector */
0 = arg(cos((A? + AL — A%)/(2A x A,));
/*angle between dynamic path vector and measured channel
vector */
04 = arg(cos((A® + Ail - A%/ (2A % Ag));
/*first subcarrier stream*/
if ((k,f)==(1,1)) then

L pbase(t) = 95;
pa(t) = L(H(k, f, 1), HQ1, 1, 1)) + ppase(t) = Oa;
/*Get the intermediate estimated dynamic dynamic path CSI
H,"/
Hy (k. f. 1) = Aq(t) * exp(=jpa(t);

fort=1to T do
CFO(t) = argmin |H(t) - Hy x CFO - H.,(t)|}
CFO

| Hy(t) = H(t) - Hg x CFO(t);
return H, CFO;

path amplitude A and the dynamic path amplitude Ay, that is,
AMX = A¢ + Ay. On the other hand, the minimum CSI amplitude
is the difference between A4 and A, that is, A™" = A; — A4 If we
assume the static path is constant, then by calculating half of the
difference between A, qx and Apin, we can get the amplitude of
dynamic path, that is Ay = (A™%* — A™") /2. In reality, however,
the CSI amplitude changes over time and the signals from the static
paths are not constant. Therefore, we calculate the amplitude of the
static paths by averaging the nearby maximum and minimum points
as in Figure 9a. After getting the amplitude of the static paths, we
can get the dynamic path amplitude at the peak points (t1, t3, ts, t7
in Figure 9a) of the CSI wave by: Ay(t) = A%(t) — Ag(t), and the
dynamic path amplitude at the valley points (2, 4, t¢ in Figure 9a)
of the CSI wave by: Ay(t) = Ag(t) — A™"(t). The dynamic path
amplitude of the rest of the samples is calculated by averaging as
shown in Figure 9b.
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Calculating the angle of measured raw CSI vector and the
dynamic path vector, respectively. At IQ plot of an individual
subcarrier, the raw CSI vector is the addition of the static component
vector and the dynamic path vector as in Figure 9c: H = Hs + H;.
At this point, we already have the amplitude of the raw CSI vector
A = |H]|, static component vector A = |Hs|, and dynamic path
vector Ay = |Hy|. So we can get the relative angle of raw CSI vector
and the dynamic path vector, respectively, as: §s = arg(cos((A? +
A% - A%)/(2A% Ag)) and O = arg(cos((A? + A% — A2)/(2A % Ay))
in Figure 9c.

Calibration phase. To calculate the Angle of Arrival (AoA) of
the dynamic path, we need the phase difference of dynamic path
across antennas and subcarriers. For each pair of subcarriers, we
calculate the phase difference of the dynamic path. In Figure 9c, we
have two subcarriers f1and f2. We have the raw CSI measurements
HST for f1 and HS? for f2. Although the CSI measurements do
not provide the absolute phase value for f1 and f2, respectively,
due to the CFO, the phase difference arg(H/1) — arg(Hf 2y is still
preserved in our extensive measurements. By observing the raw
CSI amplitude fluctuation we get the amplitude of static paths and
dynamic path as in Figures 9a and 9b. And further, we can have the

angle of raw CSI vector and dynamic path vector in Figure 9c, 95 !

for subcarrier f1 and 6‘52 for subcarrier 2. So we can calculate the

phase difference of the dynamic path:
P = s ) 0l -0 )

And we already have the CSI of statistic paths with SFO removed,
can be represented as H. H;i is the CSI of dynamic path which can
be calculated with amplitude and phase difference obtained. So the
CFO can be calculated as:

CFO(t) = argmin ||H(t) - Hs x CFO — Hy (1) (6)
CFO

Then our final estimation of dynamic path Hy is:

Hy(t) = H(t) - Hy x CFO(t) 7)

To validate our idea, we experiment our algorithm with WiFi
signals. Figure 10 shows how phase values change with our calibra-
tion techniques when we push and pull the hand. We can see that
the phase values of subcarriers 1 and 2 are quite noisy even after
the SFO calibration. With the CFO calibration, however, the phase
values of subcarriers 1 and 2 become quite similar. This makes sense
given that subcarriers in the channel will be affected very similarly
upon a particular hand movement.
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Note that our phase calibration is to extract the relative phase
value of dynamic path over the static path rather than sanitizing
the phase value of static path as SpotFi [8] did. Furthermore, it
is more challenging than the passive acoustic sensing with smart
phone [24] due to presence of the CFO.

5 SYSTEM DESIGN

Figure 11 illustrates the system architecture of our prototype to
detect hand movement that is environment and time independent
using COTS WiFi devices with no training requirements. The sys-
tem is composed of two stages, static CSI profiling stage and motion
tracking stage.

5.1 Static CSI Profiling Stage

The upper three boxes in the left column of Figure 11 comprise the
static CSI profiling stage. This stage is conducted under a static envi-
ronment during which CSI is stable. Enough samples of (static) CSI
are first collected and phase calibration is done by using method of
SpotFi [8] that deals with only the static paths. Finally, the average
value is calculated to reduce both the amplitude and phase noise.

5.2 Motion Tracking Stage

The right column of Figure 11 illustrates the motion tracking stage.
This stage is comprised of CSI sample collection in a dynamic
environment, denoising the raw CSI amplitude, detecting hand
movement by analyzing phase difference between the subcarriers,
and finally, extracting the dynamic path CSI corresponding to the
hand by taking into account the static CSI profile. After finding the
dynamic path CSI, we use the well-known MUSIC algorithm [14]
to identify the AoA changes of hand.

Denoising raw CSI amplitude: The original CSI is extremely
noisy. This noise is due to internal state changes, such as transmis-
sion power change. The noise is also on amplitude, which makes it
hard to find the amplitude peaks and valleys. We could use a low

J. Zhu et al.

pass or PCA filter as is done in [10, 23]. However, it will greatly
distort the sinusoid wave shape of the amplitude over time. Instead,
we use the Savitzky-Golay filter twice to double smooth the am-
plitude. This filter can smooth amplitude signal without greatly
shifting the peak and valley points.

Detecting hand movement with phase difference: We use
the average phase difference between the two receiver antennas
as the indicator of hand movement. We set a threshold, and if the
phase difference has fluctuations larger then the threshold, we
assume that there is hand movement and start our dynamic path
CSI extraction algorithm.

Extracting dynamic path CSI from measured CSI: WiDeo [7]
uses full duplex technology to cancel interference from strong static
signals. Such technology is not available in COTS WiFi. If the static
reflections are stronger than the reflections from the moving ob-
ject by more than the dynamic range of the radio, all information
about the moving object will be lost in the quantization error of the
ADC at the receiver. In order to eliminate the strong static path, our
method extracts the dynamic path CSI value from the measured CSI
with a pre-measured static CSI, which is described in the previous
section 4.

Estimating the direction of hand movement: After finding
the dynamic path CSI, we use the well-known MUSIC Algorithm [14]
to identify the AoA changes due to hand movement. Since we use
a spatial smoothing method to measure different dynamic paths,
the path corresponding to hand is the one that changes AoA most
rapidly. We do not use the SFO value for the purpose of localizing
the hand position, as we only have the relative SFO change value
rather than the absolute SFO value. We assume that during the
segmentation, the speed of hand movement is constant.

5.3 Tracking Hand Movement

Now we explain how to estimate the movement of hand through
AoA of the dynamic path reflected by hand. To map the direction
(two dimensional) change to hand movement, we add another re-
ceiver and get the AoA for that receiver. In this case, the intersection
of two AoAs is the position of hand. We can track hand movement
by tracking this intersection point.

6 IMPLEMENTATION AND EVALUATION

We implemented our system using off-the-shelf Intel 5300 WiFi
NICs (Figure 12). We employed the Linux CSI tool [5] to obtain the
PHY layer CSI information for each packet. The Intel 5300 has three
antennas and we place them linearly A/2 apart. We set the channel
to 40 MHz at a 5GHz frequency, which is the maximum we could
set for Intel 5300 NIC. The CSI tool provides the user CSI values of
30 subcarriers spread over 120 subcarriers of 40MHz bandwidth. In
our system we do not require any modification of the existing WiFi
standard. We only monitor the signals of the incoming packets and
analyze these signals.

6.1 Experiment set up

We set the experiment with two receivers and one transmitter. This
is a practical setup for an indoor environment such as a home
where there are typically some nodes that stay in a stable location,
e.g. the two receivers could be the access point and the smart TV
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(a) Intel 5300 NICs

(b) Intel 5300 with three antennas

Figure 12: Intel NUC with off-the-shelf Intel 5300 WiFi NICs

and the transmitter could be any other wireless node. We evaluate
our algorithm via three different types of hand motions: straight
lines by moving the hand in one direction, triangles by moving
the hand to make a triangle, and rectangles by moving the hand
to make a shape as shown in Figure 21 (dotted lines). We use pre-
defined templates as the ground truth. Each template is drawn on a
table, and the hand is moving on the table accordingly. This means
there is a possibility of extra error when the hand movement does
not follow the template exactly. In all our experiments, the two
receivers are placed 1 meter apart in a known location and the
person is siting 1 meter away from both of these receivers.

We create two wireless node deployment strategies: Light-of-
Sight (LOS) and Non-light-of-Sight (NLOS). For LOS scenario, we
put the transmitter and the two receivers on the same side of wall,
so there is no blocking of the direct-path. For NLOS scenario, we
put the receivers on the same side of wall with human while the
transmitter is on the other side of the wall, so that the direct paths
have go through a wall, and the power of the direct path and the
reflection path will be weaker compared to the LOS case.

We use a threshold in phase difference change to detect whether
there is a hand movement or not for trigging our hand tracking sys-
tem. Our experiments shows that we have 99.8% accuracy detecting
whether there is a hand movement or not.

6.2 Experimental results

Angle accuracy. Figures 13 and 14 show the CDF of the error in an-
gle measurement compared to the ground truth for LOS and NLOS
scenarios respectively. We see that straight line hand movement
has an average error of five degrees, and achieves 80th percentile
angle estimation error up to 14 degrees. For triangle and rectangle
movements, the average error is increased to ten degrees. The main
reason for this increase is that when we draw complex shapes, the
hand moves in more than one line which causes more multi-path
interference.

Tracking Accuracy. Figures 15 and 16 show the CDF of the
error in location measurement compared to the ground truth tem-
plate for LOS and NLOS scenarios respectively. We see that the
straight line hand movement has an average error of 8 cm, and
achieves 80th percentile tracking error up to 15 cm. As with the
straight line movement, for triangle and rectangle movements, the
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Figure 15: Tracking error for LOS

average error is slightly increased. The reason for this increase
is the same as that for straight line, i.e. when we draw complex
shapes, the hand moves in more than a single line, which causes
more multi-path interference.

Impact of hand movement speed. The speed of the hand mov-
ing is expected to have impact on angle and tracking accuracy per-
formance. As the hand moves faster, fewer samples are available
to track the hand. For a particular hand movement, by measuring
the path length change divided by the number of samples, we can
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estimate the speed of our hand movement. We define (30 cm/1000
samples) as the normal speed, (30 cm/500 samples) as the fast speed,
and (30 cm/2000 samples) as the slow speed. Figures 17 and 18
show the angle error and tracking error respectively for the three
different speeds for straight line hand movement (slow, normal,
and fast speed). We notice that the accuracy increases as the speed
of hand movement decreases. Accuracy is significantly increased
from quick speed movement to normal speed movement, while the
improvement from normal speed to the slow speed is small. So as
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Figure 19: Error improvements with phase difference.

long as the the hand moving speed is not too quick, the performance
is is quite good. Accuracy performance improvement gets smaller
for lower speeds because the error in those situations arise mostly
from the multi-path interference from hand movement.

Improvement with phase difference. One interesting ques-
tion is that how much the phase difference contributes to overall
accuracy of the algorithm. Figures 19 shows the improvement with
and without the the phase difference of measured CSI while draw-
ing a line. The solid lines represent the CDF of error in angle while
the dash lines represent the CDF of error in location. We see that
there is significant accuracy improvement in hand tracking if we
consider the phase difference. The scheme without phase noise is
totally based on the amplitude in calculating the dynamic path CSI.
It could only achieve 80th percentile tracking error up to 30 cm,
which is not enough for tracking the hand movement.

Environment independence: Since our algorithm extracts the
calibrated hand movement on the dynamic path from the measured
CSI, we can eliminate the difference introduced from the different
static environments. To evaluate environment independence, we
set up the same experiment in three different types of locations,
one in home, one in a conference room, and the third in a classroom
(See Figure 20). In all experiments, we performed the same hand
movement relative to the receivers.

In our experiments, we mainly focused on measuring angle and
tracking errors. We used the tool Myscript to detect the shape
of hand movements. Figure 21 also shows the snapshots of this
recognition. Average errors ranged from 5 to 10 degrees for angles
and 8 to 16 cm for tracking. It is important to note that these
errors are low enough that it is straight forward to detect the hand
movements such as straight line, triangle or rectangle with a very
high (nearly 100%) accuracy. Figure 22 shows the recognition rate in
the there different locations we tested, assuring that the algorithm
is robust to environmental changes.

We also tested the tracking angle from one receiver, which is
shown in Figure 23. As we can see, in all hand movements, we can
identify that the AoA of the hand in one of receiver moves from
approximately 41-42 degree to around 20-23 degree. This observa-
tion indicates that our algorithm can eliminate enough static-path
power to identify hand tracking and works well independent of the
environment.
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7 DISCUSSION

The accuracy of hand motion tracking using our algorithm has
some limitations, especially when other parts of the body move
along with hand movement. The multi-path caused by other parts
of body movement will affect the wave shape of the amplitude. As a
result, the assumption that the amplitude of the maximum point is
constructed by the in-phase of the static path and the dynamic path
may not hold. In our future work, we will address this limitation.

Normalized time

Figure 23: Hand direction tracking.

8 CONCLUSIONS

In this paper, we present a new phase noise calibration technique for
fine-grained motion tracking using COTS WiFi. This methodology
is non-intrusive, time and environment independent, and does not
require any training. The major obstacle in using the COTS WiFi for
advanced wireless sensing technology is the WiFi NIC’s frequency
unlocked oscillator, which introduces sampling frequency offset
and carrier frequency offset that cause too much noise in phase
when extracting motion from the CSI. We leverage the phenomenon
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of sinusoid wave on amplitude and phase values upon the dynamic
path length change which happens when there is a movement.
We first extract the amplitude of dynamic path and the triangle
relationship of measured CSI, static path CSI vector and dynamic
path CSI vector to remove phase noise and calibrate the CFO of
the CSI for dynamic path. Then we compute the dynamic path CSI
using the estimated CFO. We have developed a prototype system
based on this methodology. Experimental evaluation shows that
this prototype can detect hand movements, and distinguish between
different types of movements quite accurately.
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