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Abstract—An efficient caching algorithm needs to exploit the
inter-relationships among requests. We introduce SNN, a practi-
cal machine learning-based relation analysis system, which can be
used in different areas that require the analysis of relationships
among sequenced data such as market basket analysis and
online recommendation systems. In this paper, we present SNN-
Cache that leverages SNN to utilize the inter-relationships among
sequenced requests in caching decision. We evaluate SNN-Cache
using an Information Centric Network (ICN) simulator, and
show that it decreases the load of content servers significantly
compared to a recent size-aware cache replacement algorithm (up
to 30.7%) as well as the traditional cache replacement algorithms.

I. INTRODUCTION

Caching has been widely used in various computing systems
to enhance the performance of the system. Modern CPUs have
a multi-level cache hierarchy to reduce the cost (in terms of
time or energy) of accessing data in the main memory. A
web cache is a technology for the temporary storage of web
documents close to the users to reduce the latency of retrieving
them from the remote server. In the datacenter, the results of
common database queries are stored in the caching servers
for faster access of subsequent identical queries (e.g., Mem-
cached [12] and Redis [13]). Information Centric Network
(ICN) is also designed to utilize the network caches in order
to reduce network traffic for the duplicate content requests.

An efficient caching algorithm needs to utilize the inter-
relationships between sequenced requests as these requests are
typically correlated. For example, web users tend to request
web contents related with previously requested contents. Re-
quests also have temporal locality; data in specific memory
regions are often accessed repeatedly. However, precisely
understanding the relations among data is difficult and time-
consuming due to a huge amount of data requests in gen-
eral caching systems. Therefore, simple Least Recently Used
(LRU) or Least Frequently Used (LFU) based algorithms have
been widely used in practice.

These days, machine learning (ML) is widely used to solve
problems in many different areas of computer systems. How-

ever, no prior work has utilized this ML approach to analyze
the request patterns for obtaining the inter-relationships be-
tween sequenced requests and apply them to make an efficient
caching system. Association rule learning is an representative
technology for the inter-relationship analysis of a large dataset,
which is based on a rule-based machine learning approach that
discovers interesting relations between variables, using sup-
port, confidence, lift, interest-support, cross support as mea-
sures of significance and interest for the association rule [25].
Sequential pattern mining is a method which finds statistically
relevant patterns among sequentially delivered data [21]. These
approaches are mostly post-processing methods which are
performed after the whole data are collected, and not suitable
for applications that require real-time processing such as
caching systems.

We present Stimulable Neural Network (SNN), a practical
machine learning-based relation analysis system that analyzes
the inter-relationships among sequenced requests in real-time.
SNN considers a trade-off between the high accuracy and low
computational overhead in the analysis. To show the efficacy
of SNN, we present SNN-Cache, an example application
which utilizes SNN to find the inter-relationships among data
requests to make an efficient caching decision for ICN. The
contributions of this paper are as follows.

1) New approach to the caching system. Unlike previous
caching approaches based on recency, frequency, and cost,
SNN-Cache analyzes the relationships among data to make
caching decisions. This new approach can utilize the previ-
ously unknown information on time-varying relations of data,
and incorporate different factors to the caching decision such
as content size and data retrieval cost.

2) Evaluation using realistic data. We evaluate SNN-
Cache using an ICN simulator and a large content name
dataset, and show that it significantly decreases the load
on content servers in comparison to (i) a recent size-aware
cache replacement algorithm (by up to 30.7%), (ii) traditional
cache replacement algorithms and (iii) ICN caching decision
algorithms.
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The rest of this paper is organized as follows. Section II
overviews the related work in caching systems. Section III
presents the architecture and operations of SNN, and its
applications including SNN-Cache. Section IV evaluates the
performance of SNN-Cache by comparing it with various other
algorithms. Section V concludes the paper.

II. RELATED WORK

The landscape of caching work can be understood by
categorizing algorithms based on their choice of measures
for caching decisions. For example, one can categorize the
caching work into recency-based approaches ( [11], [24], [33]),
frequency-based approaches, hybrid-approaches ( [19], [23]),
cost and function-based approaches ( [6], [30], [32]). All
of these algorithms rely on imposing a partial or complete
ordering of the elements stored in the cache, by the use of
appropriate data-structures.

Another categorization of caching algorithms could be
based on the data structure that is used to organize the cached
elements. While most algorithms are based on queues, lists or
trees, there exist a few algorithms like Hyperbolic Caching [7]
that uses a set representation of the cached items. These
algorithms have an implicit ordering of the elements obtained
by the computation of a priority function of each item. The
choice of the data-structure thus impacts the flexibility and the
extensibility of the caching strategy.

Based on the nature of caching policy, the caching strategies
can be classified as follows: 1) static policies: the caching-
decision is based on the same criteria for all requests and for
all time, 2) dynamic policies: the caching-decision is based
on criteria that varies over time, but lies within a finite set of
pre-defined values, 3) learning policies: the caching-decision is
based on a criteria that varies over time, and assumes values
that are learned based on past-experiences. The parameters
that define the policy are not constrained to a finite set of
pre-defined values. We shall now proceed to illustrate this
classification with associated previous works.

Most of the earliest cache replacement algorithms were
static policies. These were primarily of the type that measured
temporal locality of the incoming requests based on ”recency”,
”frequency” or a hybrid combination of the two. This measure
was used to create a partial or complete ordering of the cached
elements. Most of these algorithms were then modified by
the introduction of measures of cost or the definition of a
priority-function. Some algorithms like GreedyDual [33] uses
priority queues for size-aware caching in web proxies and
GDWheel [20] uses a more efficient wheel data structure.
Other algorithms like RIPQ [31] use the size of content items
as a measure of cost, while some algorithms proposed the use
of expiration-time [1], [5] and freshness [30].

Dynamic caching algorithms are designed to dynamically
select between a set of caching policies. Some of the early
implementations used multiple-queue implementations, start-
ing with the LRU-2 policy. Other works employing multiple
queues include LRU-K [24], 2Q [16], MQ [34], LIRS [15] and
ARC [23]. Several of these algorithms such as [23] incorporate

ghost caches, which track information about items which are
no longer in the cache.

Learning policies refer to a class of algorithms that started
off with the publication of the Adaptive-LRFU [18], which
helped realize a caching strategy that could implement any
policy lying between the two extremes of LRU and LFU. In
essence, this class of policies generally comprise of a tuning-
parameter, that needs to be set either off-line or on-line, which
then determines the policy that shall be implemented on the
incoming workload. The caching policy is informed by the
characteristics of the workload rather than being defined by
a heuristic. Some of the recent learning policies use ghost-
queues to learn the parameters that define the policy in an
on-line manner. For example, ARC automatically tunes the
queue sizes of an LRU-2-like configuration. Other algorithms
like Hawkeye [14] use memory and a simulation of an optimal
algorithm, to guide the learning policy.

III. SNN: STIMULABLE NEURAL NETWORK

SNN is a machine learning approach that analyses the inter-
relationships among sequenced data in real time and with low
computational complexity. SNN can be used in various appli-
cations that require real-time relation analysis including ICN
caching, market-basket analysis and on-line recommendation
systems. In this section, we provide an overview of SNN based
caching strategy - the architecture and constituent operations.
This shall be followed by a description of a few illustrative
applications of this technology.

A. Overview of SNN

SNN is inspired by the biological neural network in which
a large number of connections are made among neurons
to conduct complex computations. SNN captures the inter-
relationships between the data items by using a set of real-
valued matrix filters. As new data items enter into the cache,
the data-names are used to identify areas within the filters that
shall be updated. The values in the filters get updated with each
incoming-request. In this way, these filters help account for the
structural similarity between the data items and the temporal
relationship in the occurrence of different data items.

B. Architecture and Operations

SNN consists of several modules: Data Reception Module,
Data Preprocessing Module, Correlation Filter Module, and
the Impulse Calculation Module.

1) Data Reception Module: Data Reception Module ex-
tracts the metadata which can be used for the analysis from
the received data and conveys it to Data Preprocessor mod-
ule. For a system that analyses the relationships among the
network packets, the packet header information is extracted.
The metadata extracted varies according to the application in
which SNN is used.

2) Data Preprocessing Module: The metadata received
from Data Reception Module is further processed so that it
can be used by the Correlation Filter Modules. The Correlation
Filter Modules can maintain multiple filters corresponding to
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Fig. 1: Architecture of SNN.

each field of the metadata. In such case, the Data Preprocessing
Module separates the metadata into required fields. In ICN
caching, the name segments of the content name are extracted
from the metadata. Additional information related to the
incipient content can also be used to inform the update process
within the filters. For example, within the ICN domain, the size
of the content and the hop-count from the data-source are used
as alternative measures of cost.

3) Correlation Filters Module: Correlation Filters Module
stores the inter-relationships among data in encoded matrices.
The number of filters depend on the number of fields extracted
within the Data Preprocessing Module. If the metadata is
separated into 3 fields, f1, f2, and f3, three Main Relation
Filters for the self-relations of each field, f1−f1, f2−f2, and
f3 − f3, are created. In addition, three Cross-field Relation
Filters that represent the relations between two fields, f1−f2,
f1 − f3, and f2 − f3, are created. Finally, one additional
filter, Data Identification Filter, for identifying the data itself is
created. The definition of the filters and the assigned meaning
to the indices are customizable to the domain in which SNN
is utilized. When a new data is delivered, the corresponding
values at filters are expanded by using the Expansion Func-
tion. The expansion is to reflect the increased incidence of
the relationships between identified objects. The Contraction
Function is used to contract all the values in all the filters
at a periodic interval. The contraction is applied to reflect the
decrease in importance of past patterns in relationships as time
increases. These two functions should be monotonically in-
creasing (Expansion Function) and monotonically decreasing
(Contraction Function), respectively, with a maximum value
of 1 and minimum value of 0. These two functions can be
chosen according to the characteristics of the system domain.

When a new data arrives, the index of the matrix for the data
(idx) is calculated by applying a hashing function (H) to the
value of the corresponding field (f ) and a modular operation
using the filter size (n).

idx(f) = H(f) mod n (1)

If the calculated index is c, the values at locations (x, c) and
(c, y) where 1 ≤ x ≤ n, 1 ≤ y ≤ n are updated by using the
Expansion function. The Expansion Function can take into

account the cost of the data. For example, the cost can be a
content size in Web proxy or Content Delivery Network(CDN)
node. For a data with the same priority, a larger data is more
valuable than smaller one because it takes more resources to
retrieve the larger data from the network or from a lower level
in the cache hierarchy such as a disk. The cost can also be
indicated by a hop count in an ICN network: the hop count
reflects the traffic cost to retrieve the content from the Content
Router or the Origin server. The Contraction Function can be
applied periodically over a fixed time period (e.g., 30 seconds)
or data-count period (e.g., 30 data items).

4) Impulse calculation Module: The relations of a datum
with other data in a specific time point are calculated in this
module. The relations of a datum with all other data are
calculated by summing up all the values in the row or column
that corresponds to the index of the datum for each filter and
then adding up the values obtained from each filter. To reflect
the relative importance of different filters, each filter is set
with a constant positive weight (> 0). It is also possible to
calculate the relation of a datum with a specific datum or a set
of data. In this case, only the columns or rows that correspond
to the considered data are used in the calculation.

C. Applications

1) SNN-Cache: SNN-based ICN content router: SNN can
be applied to ICN content routers (CRs) as shown in Figure 2.
CRs can learn the content request/delivery patterns and use
them in the cache replacement policy. SNN-Cache can enhance
not only the hit-ratio of a single content router, but also the hit-
distance and traffic load over the network, by efficiently using
the limited cache space through the elimination of redundant
caching among content routers.

SNN-Cache can be implemented by extending the basic
functions of SNN modules. The operations of the caching
algorithm differ according to the type of the packet: Interest
or Content. Interest packets are used for learning the content
request pattern, while Content packets are used to make actual
decisions on caching.

Data Reception Module sends the content name to Data Pre-
processing Module along with the hop count information (from
the content requester) additionally in the case of Interest pack-
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Fig. 2: Architecture of SNN-Cache.

Fig. 3: The Expansion Function(top) and Contraction Func-
tion(bottom) for SNN-Cache.

ets. For an Interest packet, Data Preprocessor Module separates
the content name into segments, and sends them to Correlation
Filters Module with the hop count information. It divides
the content name into 3 segments: Global routing name seg-
ment(GRNS), Application dependent name segment(ADNS),
and Object dependent name segment(ODNS). For a con-
tent name /com/blogspot/cocinaconsilvia/almendras.html, the
segments are divided as ”/com/blogspot” (GRNS), ”/cocina-
consilvia” (ADNS), and ”/almendras.html” (ODNS). Three
Main Relation Filters(MRF), three Cross-field Relation Fil-
ters(CRF), and one Data Identification Filter(DIF) are created
for the three classes of name-segments. For a content packet,
the name segments extracted are sent to the Impulse Calculator
Module(ICM).

Correlation Filters Module updates its filters when it re-
ceives the hop-count and name segments for Interest packets
according to the Expansion Function. The gradient of incre-
ment applied to the expansion function is inversely propor-
tional to the hop count. This helps to increase the probability
of caching content-items in the CRs close to the content
requesters.

When Impulse calculation Module receives name segments
for a content packet from Data Preprocessing Module, it
calculates the impulse value for the content, which is sent

to the Caching Policy Module. In the calculation of impulse
value, we multiply the original impulse value by the content-
size to reflect its load on the network traffic when serving
the content. If the cache has an content with smaller impulse
than the received impulse value, Caching Policy Module
replaces that content with new content. We test various types
of Expansion and Contraction Functions, and discovered that
negative sigmoid function (shown in Figure 3) works best to
reflect the variation of content request/delivery patterns.

2) Market basket analysis: SNN can be applied to the mar-
ket basket analysis, an analysis of relations among products
purchased in the market. In existing market basket analysis,
the relations among sales of the products are derived by using
statistical methods through data mining. Primary metrics are
support

(
P (X ∩ Y )

)
, confidence

(
P (Y | X) = P (X∩Y )

P (X)

)
,

and lift
(

P (Y |X)
P (Y ) = P (X∩Y )

P (X)P (Y )

)
. The support is the ratio of

the sales that include the products X and Y among all sales
records, while the confidence is the probability that the product
Y is purchased when the product X is purchased. The lift is
a metric that decides the independence of products X and
Y . However, these methods are not suitable for the analysis
of the time-varying relations in sales data. In addition, the
complexity increases drastically when the number of products
to observe is increased. SNN can be used for a real-time
analysis of the relations among purchased products. When a
purchase event occurs, the information is transmitted to the
analysis system, and the relations among products stored at
filters are updated. When a query for the relation of specific
products is delivered, the analysis system returns the result
by calculating the impulse value. By observing the traces of
these relations, we can also analyse the temporal patterns of
the sales data.

IV. EVALUATION

We evaluate the performance of SNN-Cache in this section.

A. Simulation settings

For the evaluation of the performances of different caching
algorithms, we use Icarus, the caching simulator for ICN [28].
We implement the basic algorithm of SNN in C++ module, and
connect the Icarus simulator with the SNN module by using
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Setuptools [2] and SWIG [3]. We also implement the Hyper-
bolic Caching in Icarus’ cache replacement policies modules.
We calculate the priority of the content i by

(
pi = ni·si

ti

)
where ni is the request count for i since its entrance to
the cache, ti is the time from the entrance to the cache, si
is the content size. We also add a performance metric for
calculating per-node and network traffic on the Performance
metrics loggers module in Icarus.

We test two scenarios: a single router scenario and network
topology scenario. The first scenario is to look into the
performance of our algorithm without the effect of the network
topology, and also corresponds to a single caching system
such as web cache and data center cache servers. For the
single router scenario, we use a content request trace of 1,000
contents, 100 clients, and 20,000 content requests with the
Zipf content size distribution of α = 1.0 according to [29],
and Zipf content popularity distribution of α = 0.6, 0.8, 1.0.
Measurements of [8] and [22] provide estimates for alpha
parameter between 0.64 and 0.83. More recent results in
[9] present a Zipf popularity with α ≈ 0.88. Based on the
content names from [4], our request generator creates content
requests for a set of given parameters such as number of
contents, requests, α for Zipf content size distribution, α
for Zipf content popularity distribution, etc. We compare the
performance with a up-to-date cache replacement algorithm,
Hyperbolic Caching [7] and traditional algorithms such as
LFU, LRU, segmented LRU. We also compare with baseline
algorithms such as random and FIFO. For the cache decision
algorithm, we use LCE (Leave Copy Everywhere).

For the network topology scenario, we use the WIDE
topology provided by Icarus. The WIDE topology includes
11 content servers, 6 clients, and 13 content routers. We also
use the same settings for the content requests as the single
router scenario with one exception of 6 clients. We compare
the performance with different ICN cache decision algorithms,
such as Symmetric Hash Routing, Asymmetric Hash Routing,
Multicast Hash Routing, Asymmetric-Multicast Hybrid Hash
Routing, Symmetric-Multicast Hybrid Hash Routing [27],
Cache Less for More [10], ProbCache [26], LCD [17] and
random algorithm which caches the content on a randomly
selected node on the delivery path. We use LFU as the cache
replacement algorithm for each of the alternative ICN cache
decision algorithms mentioned above. While executing the
SNN-Cache algorithm, we use LCE as the caching-decision
algorithm.

B. Analysis

The result of single router scenario is shown in Figure 4. The
content size-agnostic algorithms such as LFU, LRU, SLRU,
RANDOM, FIFO increase the server traffic significantly com-
pared to SNN-Cache. The Hyperbolic Caching algorithm
reduces the server traffic considerably, but still it requires 6.6
to 30.7 % higher server traffic than SNN-Cache. We assert that
the SNN-Cache algorithm is thus more effective in reducing
the server traffic than the simple frequency- and size-based
algorithm like Hyperbolic Caching. The α parameter affects
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Fig. 4: Performance comparison in the single router scenario.
The relative increases of server traffic compared to SNN-Cache
are shown.

the performance of comparison algorithms. While SNN-Cache
shows a similar ratio of the traffic amount by cache hit and
the total traffic amount for different α parameters, it decreases
in all other comparison algorithms as α increases. We claim
that this is a good feature of SNN-Cache, because SNN-Cache
achieves an efficient cache utilization regardless of the content
popularity distribution.
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the single router scenario. The relative increases of server traffic
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We observe the performances of different cache replacement
algorithms by varying the size of the cache entries in Figure 5.
We run the experiments with the cache size of 50 and 200 in
addition to the original size 100. The amount of the server
traffic increase depends on the cache size. As the cache size
becomes larger, SNN-Cache achieves a higher performance
enhancement to the other cache replacement algorithms.

The result of WIDE network topology scenario is shown
in Figure 6. All the tested cache decision algorithms show
higher mean node traffic than SNN-Cache. While Symmetric
Hash Routing, Multicast Hash Routing, Symmetric-Multicast
Hybrid Hash Routing produce lower server traffic than SNN-
Cache, they induce more traffic on the whole network for the
content diversity on the cache nodes.

V. CONCLUSION

In this paper, we present a real-time, machine learning based
approach, called SNN, for the analysis of inter-relationships
among sequenced data. As an example application of SNN,
we present SNN-Cache that exploits the inter-relationships
among sequenced requests in caching decision. We evaluate
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SNN-Cache using an ICN simulator, and show that it reduces
the load of content servers significantly compared to not
only the traditional cache replacement algorithms and ICN
caching decision algorithms, but also the up-to-date size-aware
cache replacement algorithm. As a future work, we plan to
implement and evaluate other SNN-based systems such as
market basket analysis and online recommendation systems.
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