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Abstract— The growing volume of mobile data traffic has
led many Internet service providers (ISPs) to cap the monthly
data usage of their users and to charge overage fees, when the
data caps are exceeded. Yet data caps imperfectly capture the
reality of heterogeneous data usage over a month—even the same
user may have varied requirements from month to month.
In response, some ISPs are providing alternative avenues for
users to customize data plans to their needs. In this paper,
we examine a secondary data market, as for example created
by China Mobile Hong Kong, in which users can buy and
sell leftover data caps from one another. While similar to an
auction in that users submit bids to buy and sell data, it differs
from traditional double auctions in that the ISP serves as the
middleman between buyers and sellers. Such a market faces two
questions. First, can users learn each others’ trading behavior
well enough for the market to function, and second, do ISPs have
a financial incentive to offer such a market? Different users’
abilities to trade data depend on others, thus forcing users to
not only optimize the amounts of data they bid, but also to
learn and adjust for other users’ trading behavior. We derive
users’ optimal behavior and propose an algorithm for ISPs to
match buyers and sellers. We compare the optimal matchings
for different ISP objectives and derive conditions under which
the secondary market increases ISP revenue: while the ISP loses
revenue from overage fees, it can assess administration fees and
profit from the differences between the buyer and seller prices.
Finally, we use one year of usage data from 100 U.S. mobile users
to simulate the market dynamics and to illustrate that sustainable
conditions for a revenue increase for the ISP can hold in practice.

Index Terms— Smart data pricing, double auction, mobile data
trading.

I. INTRODUCTION

TWO of the primary challenges facing Internet service
providers (ISPs) today are the growing volume and
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diversity of mobile data traffic [2]. In response, ISPs have
attempted to simultaneously customize mobile data access to
allow for different user or application behavior and find ways
to limit user demand to available network capacity [3]–[5].
While much of this work focuses on technical modifications
to network operations, e.g., automatically adapting application
usage to network congestion [6], in this paper we focus on a
higher-level concern: is there a market for data usage?

Though different types of pricing do not determine applica-
tion data demand, ISPs can influence users’ data consumption
patterns and incentivize users to behave in ways that reduce
network congestion [7], [8]. Pricing is also an important
component of perceived user experience: users who expect
better network service are willing to pay more for data usage.
Thus, different pricing plans can complement other lower-
layer or automated mechanisms for customizing and limiting
data usage. In order to do so, these data plans should be able
to accommodate different user behavior, e.g., users consume
different amounts of data over a month, and the same user’s
data consumption can change from month to month [9], [10].
There is then high variability in users’ willingness to limit
their data usage and potentially prevent excessive network
congestion. Most ISPs today have attempted to limit excessive
data usage by charging users a fee for a maximum amount of
data quota within a month, i.e., a monthly data cap [4], with
additional steep overage fees or throttling for data usage over
the cap [11]. Yet this rigid pricing does not take into account
usage heterogeneity. We consider an emerging alternative,
traded data plans, in this paper.

A. Traded Data Plans

The discrepancy between heterogeneous data usage and
fixed data caps has been somewhat mitigated by shared data
plans [12], [13]. Such plans allow data caps to be shared
across multiple users and devices; thus, users with a high data
demand can reduce the likelihood of exceeding their data caps
by sharing a cap with other users who have less data demand.
Yet most users share their data caps only with their immediate
family members.

Understandably, the majority of the users may not be willing
to give away their leftover data caps to strangers, but there
is a possibility that they might sell their leftover data. Users
with a large data demand could then purchase additional
data from other users, thus avoiding ISPs’ high overage fees
and customizing their own data caps to their needs in each
month. Interestingly, ISPs can have an instrumental role in
this secondary market, both to enforce the traded data caps in
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users’ bills (e.g., ensuring that buyers are not charged overage
fees for their purchased data), and to help buyers and sellers
locate one another (e.g., through an exchange platform). China
Mobile Hong Kong (CMHK) introduced such a secondary
market at the end of 2013 [14]. CMHK’s 2cm data exchange
platform allows users to submit bids to buy and sell data, with
CMHK acting as a middleman to match buyers and sellers,
and as a bookkeeping facilitator, to ensure that the sellers’
trading revenue and buyers’ purchased data are reflected on
their monthly bills.

Traded data plans have been studied in [1] and [5], with [15]
particularly emphasizing user trading behavior, but much
research remains to be done. Our work considers several
important research questions: how do users choose the bids
to submit, and how does an ISP match buyers to sellers?
More fundamentally, are traded data plans a profitable way for
ISPs to accommodate user heterogeneity? Are users adaptive
enough to trade data in this secondary market?

Intuitively, we would expect ISPs to lose revenue with the
secondary market: instead of purchasing overage data from
the ISP, users can potentially buy data directly from other
users at lower prices. However, the ISP’s role as a middleman
between the buyers and sellers allows it to extract revenue
from buyer-seller transactions.1 In this work, we derive the
optimal economic behavior of the buyers, sellers, and ISP,
as well as propose algorithms to learn data trading behavior.
We show that all three parties can benefit from the option of a
secondary market, and validate our analysis with simulations
over a one-year dataset of 100 users’ monthly usage from a
U.S. ISP.

B. Related Work

Auction solutions have been proposed to form a self-
organizing market that incentivizes users to participate in data
trading. Most previously studied data auctions aim to mitigate
network congestion [16], [17], while recent works propose
variants of data auctions by leveraging user behavior. The
trading mechanism proposed in [18] allows users to sell their
data by becoming hotspots for others, but user mobility can
jeopardize the viability of such a market. With the ISP’s
involvement, the data transactions in our work can be done
remotely. Considering a similar trading model, the author
in [19] discusses users’ decisions on their usage at different
times of the billing cycle. We argue that users will adjust their
decisions over the billing cycle depending on their abilities to
buy and sell data.

Conventional two-sided matching is applied in the litera-
ture mostly for allocating resources to users. For instance,
secondary users are matched to desirable spectrum from
primary users in cognitive radio networks [20], [21]. In a gen-
eral wireless setting, matching enables assignments between
operators and small cells as well as between small cells and
users [22], [23]. However, these resources are only held on a

1There may be long-term branding and marketing benefits, beyond the
monetary benefit, for an ISP to offer a secondary market. We do not consider
these long-term effects in this paper, and instead focus on user and ISP
behavior within a month.

temporary basis, so the user incentives are different from those
in data trading. Moreover, most two-sided auction works do
not consider the incentives of an auction middleman.

C. Modeling User and ISP Behavior

We suppose that each seller (resp. buyer) can submit a bid
to the secondary market consisting of the volume of data
that the user wishes to sell (or buy) and the unit price to
accept (or pay). The ISP then matches buyers and sellers to
each other. While the ISP determines the amount of data that
users can buy or sell, buyers always pay their bid prices for
any data bought, and similarly sellers always receive their bid
prices (any differences between the amounts paid and received
go to the ISP). Thus, users have little incentive to lie about the
prices that they are willing to accept (sellers) or pay (buyers).

1) Choosing Optimal Bids (Section II): When choosing how
much data to bid, users must account for its effect on their
usage in the rest of the month, which also depends on their
unknown future usage preferences. For instance, buyers may
use more data if they can buy data in the secondary market.
However, users might not be able to trade their entire bid
amount; thus, if they benefit more from trading a very small
amount of data rather than an amount near the optimum, they
may bid a smaller amount of data. We show that it is optimal
for users to assume they can trade their entire bid and derive
the amount of data to bid as a function of the bid price,
accounting for its effect on future usage.

The prices that users bid affect whether their bids can be
fully matched: for instance, some buyers may not pay the high
price set by a seller. However, users do not know a priori
how much of their bids can be matched, as they do not have
information about the ISP’s matching algorithm or the other
users’ bids. They can, however, learn from their previous
trading experience and adjust their bid prices accordingly.
We first examine ISPs’ matching policies before proposing an
algorithm for users to dynamically increase their likelihood of
being matched in the secondary market.

2) Matching Buyers and Sellers (Section III): The ISP
matches users so as to optimize its revenue, including volume-
based administration fees and “bid” revenue, or the price
difference between buyers who pay higher price and sellers
who accept lower prices. Since buyers will buy more data in
the secondary market due to its low prices as compared to
ISP overage fees, the ISP can collect substantial administra-
tion fees, which can exceed its primary market revenue and
compensate for a loss of overage revenue in the secondary
data market. Moreover, buyers’ purchased data comes from
sellers’ existing data caps, thus leading to less overall traffic.
We compare the users matched when the ISP optimizes its
different types of revenue and derive conditions under which
the ISP gains revenue as compared to the primary market.

3) Market Dynamics (Section IV): As users participate in
more matchings, they can more reliably estimate the amount of
data they can buy or sell at given prices. This process forms
a feedback loop between users and the ISP as users learn
more about other users’ bids and the ISP’s matching algorithm.
We propose an algorithm for users to adjust their expectations
of being matched and change their bid prices accordingly.
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Fig. 1. Buyer-seller matching with their bids and ISP revenue.

We simulate the day-to-day market interactions over a
one-year dataset of monthly usage for 100 U.S. ISP customers
in Section V. We show that the buyers, sellers, and ISP can
mutually benefit from the secondary market. We conclude the
paper in Section VI. All proofs can be found in the Appendix.

II. USER TRADING BEHAVIOR

The secondary market consists of L buyers who purchase
data from other users and J sellers who sell their leftover
data. In this section, we discuss how sellers (Section II-A)
and buyers (Section II-B) choose their bids to maximize their
utilities,2 and then consider how users choose whether to
become a buyer or seller in Section II-C. Since users can
choose whether or not to participate in the secondary market,
they can benefit from having the option of participating.
We now introduce notation and behaviorial considerations
common to both buyers and sellers.

Since different users can purchase different data caps from
their ISPs [11], we denote a buyer l and seller j ’s data caps
before trading as db

l and ds
j respectively. Each buyer and seller

has a maximum amount of leftover data, denoted as ob
l and os

j ;
thus, each user consumes at least db

l − ob
l (buyers) or ds

j − os
j

(sellers) amount of data. For instance, users will likely have
some predictable usage over a month, e.g., for habitual web
browsing and checking email. Note that this leftover data must
be less than the data cap: ob

l ≤ db
l and os

j ≤ ds
j .

We define a buyer l’s bid by an amount of data bl and a
price πl that she is willing to pay. Similarly, each seller j
bids a price σ j for an amount of data s j . Figure 1 shows how
buyers’ bids are matched to sellers’ bids and how the ISP
receives revenue in the secondary market. In this example,
the buyer purchases her entire bid. The seller’s income is split
between the administration revenue paid to the ISP and the
revenue kept by the seller. The ISP receives bid revenue from
the difference between buyer and seller prices. The bid prices
are lower bounded by an administration fee ρ per unit data
sold that the ISP imposes on the sellers, as in CMHK’s traded
data plan [14]. Although the administration fee could also be
charged to the buyers, it would give them less incentive to
join the secondary market; however, sellers can always deduct
this fee from their income and still be guaranteed a positive
profit if πl ≥ ρ.3 Thus, sellers will not accept a buyer l’s price

2The utility maximization may be performed by third-party agents working
on behalf of buyers and sellers.

3Our model can easily be adapted to include both buyer and seller
administration fees; since the qualitative results will not change, we assume
seller-only fees for simplicity of presentation.

if πl < ρ. The prices are upper-bounded by the ISP’s overage
fee p per unit data: buyers prefer to buy data from the ISP at
price p rather than accept seller j ’s price if σ j > p.

Without knowing other users’ bids and the ISP’s matching
algorithm, each user decides the optimal amount of data
to trade by maximizing his or her utility, given a price to
accept or pay. Absent the cost or revenue from trading data,
users gain utility from consuming data. We use the standard
α-fair utility functions with α ∈ [0, 1) to model the usage
utility from consuming c amount of data [24], [25]:

V (c) = θc1−α

1− α
, (1)

where θ > 0 is a normalization constant representing users’
relative utility from their data consumption and payment to
sellers (resp. income from buyers). A higher θ also scales
up the marginal return of usage utility, encouraging users to
consume more data. The strict concavity of this α-fair utility
function captures the diminishing utility increase for heavy
data consumption: as users consume more data, they receive
less satisfaction from each additional unit of data consumed.
As α increases, users’ demands are more sensitive to the
increase in usage utility.

A. Sellers’ Optimal Bids

Since sellers can submit bids before the end of the month,
they do not know their exact eventual monthly usage. Thus,
we suppose that each seller j ’s realized usage cs

j for the month
is a random variable with distribution f . This distribution
depends not only on the amount of data sold s j , but also
on the user’s maximum leftover data os

j and data cap before
trading ds

j .
Figure 2 shows that the j th seller consumes at least ds

j −os
j

amount of data, i.e., his minimum usage, and at most ds
j −

s j amount of data, i.e., the data cap after selling data (s j ≤
os

j ). The j th seller’s expected usage utility from selling s j

data is then
∫ ds

j−s j

ds
j−os

j
V s

j (c
s
j ) f (cs

j )dcs
j , and his revenue equals

(σ j − ρ)s j , so the expected utility of the seller when selling
s j data is given by:

E(Us
j | s j ) =

∫ ds
j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j + (σ j − ρ)s j . (2)

We note that (2) is always increasing in the price σ j . Thus,
sellers always bid higher prices, subject to their ability to
be matched to buyers (cf. Section IV). Given σ j and the
distribution f , the seller chooses s�

j (σ j ) ∈ [0, os
j ] so as to

maximize the utility (2). Though it is possible that the seller
will not be able to sell all of his data, it is still optimal
for the seller to bid the utility-maximizing s�

j as long as
E(Us

j | s j ) is concave: If E(Us
j | s j ) is concave, then E(Us

j | s j )

increases in s j for s j ∈ [0, s�
j ]. Thus, the seller always

increases his utility by bidding the maximum amount of data
up to the optimal amount. Though we formulate this utility
maximization problem in terms of a general distribution f ,
to provide analytical insights, we show below some illustrative
distributions for which E(Us

j | s j ) is concave.
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Fig. 2. Relationships between the data caps (ds
j and db

l ), leftover data (os
j and ob

l ), and data sold/bought (s j and bl ).

1) Example Distributions: We first consider the extreme
case of a delta distribution, where a user’s realized usage for
the month only has one possibility: for instance, some sellers
may only use the minimum data (i.e., f is a delta distribution
centered at ds

j −os
j ), while others may use up their entire data

caps in the month, (i.e., f is the delta distribution centered at
ds

j − s j ). This distribution can model a seller whose usage is
consistent from month to month, e.g., someone who mainly
uses cellular data while commuting to and from work, and
otherwise uses WiFi. In the former case, E(Us

j | s j ) is linear
in s j and the seller bids s�

j = os
j amount of data. In the latter

case, the utility function in (2) can be written as:

Eδ(U
s
j | s j ) = V s

j (d
s
j − s j )+ (σ j − ρ)s j . (3)

Thus, we compute the optimal bid as s�
j =

max

{

0, min

{

os
j , ds

j −
(
(σ j − ρ)/θ s

j

)−1/αs
j
}}

.

In most cases, the seller’s usage will fall somewhere
between these two extremes. We thus follow [12] in supposing
that it follows a uniform distribution f (cs

j ) = (os
j − s j )

−1

between ds
j−os

j and ds
j−s j . For instance, a user who consumes

more data when traveling may have unpredictable data usage
based on his or her travel plans in a given month. In this case,
we first show that E(Us

j | s j ) is a concave function.
Proposition 1: The utility function of the j th seller

E(Us
j | s j ) in (2) is concave in s j if f (cs

j ) is a uniform
distribution. Then, the optimal bid s�

j satisfies

(os
j − s�

j )(σ j − ρ) = V s
j (d

s
j − s�

j )−
∫ ds

j−s�
j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j .

(4)

We now observe that s�
j is increasing in σ j , as we could

intuitively expect:
Corollary 1: The optimal amount sold s�

j (σ j ) for each
seller j increases as σ j increases if E(Us

j | s j ) is concave.
To solve for s�

j satisfying (4), we use the nonlinear
Perron-Frobenius theory for Algorithm 1. We refer the reader
to [26], [27] for more details of the nonlinear Perron-
Frobenius theory and its applications in wireless networks.

Lemma 1: Algorithm 1 converges geometrically fast to the
fixed point s�

j in (4) from any initial point s j (0) if s�
j ≤ ds

j −(
θ s

j (1+ αs
j o

s
j/ds

j )/(2(σ j − ρ))
)1/αs

j
.

Since the right-hand side of Lemma 1’s condition decreases
in the utility scaling factor θ s

j , we expect it to be satisfied
for relatively small θ s

j . For such θ s
j , the user has relatively

low utility from usage, as we would expect from a seller.
We formalize this intuition in Section II-C.

Algorithm 1 Sellers’ Utility Maximization
Initialize s(0) ∈ (0, os ).
1) The j th seller updates the data caps to be sold:

s j (k + 1) = os
j −

1

σ j − ρ
V s

j (ds
j − s j (k))

+ 1

σ j − ρ

∫ ds
j−s j (k)

ds
j−os

j

V s
j (cs

j ) f (cs
j )dcs

j .

2) Normalize s j (k + 1):

s j (k + 1)← min

⎧
⎪⎪⎨

⎪⎪⎩
s j (k + 1), ds

j −
⎛

⎝
θs

j

(
ds

j + αs
j os

j

)

2ds
j (σ − ρ)

⎞

⎠

1
αs

j

⎫
⎪⎪⎬

⎪⎪⎭
.

B. Buyers’ Optimal Bids

Like the sellers, buyers do not exactly know their future
usage. Thus, we take the buyer’s monthly usage cb

l to be a
random variable with distribution f (cb

l ) between the minimum
usage db

l − ob
l and data cap after trading db

l + bl (Figure 2).
Hence, the expected data usage utility of the lth buyer pur-

chasing bl amount of data is given by
∫ db

l +bl

db
l −ob

l
V b

l (cb
l ) f (cb

l )dcb
l .

Each buyer l’s cost of purchasing bl amount of data is blπl ,
so the expected utility of the lth buyer is

E(Ub
l | bl) =

∫ db
l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l − blπl . (5)

Since (5) is decreasing in πl , buyers wish to bid at lower
prices, subject to their ability to be matched to sell-
ers (Section IV). As with the seller, the buyer will always
bid her utility-maximizing b�

l if E(Ub
l | bl) is concave.

1) Example Distributions: As for sellers in Section II-A,
some buyers will use only their minimum usage db

l −ob
l ; these

buyers will therefore not purchase any data in the market.
Other buyers will use up their entire data caps, i.e., their
distributions f will be the delta distribution centered at db

l +bl .
The utility function under this delta distribution is given by

Eδ(U
b
l | bl) = V b

l (db
l + bl)− πlbl, (6)

yielding the optimal data bid b�
l (πl) = max

{ (
πl/θ

b
l

)−1/αb
l −

db
l , 0

}
.

In most cases, however, the buyer’s usage will lie between
the two extremes; as for sellers, this distribution models
users with unpredictable data usage over the month. We thus
consider f to be the uniform distribution f (cb

l ) = 1/(ob
l +bl).

We first show that the utility in (5) is concave:
Proposition 2: The utility function of the lth buyer

E(Ub
l | bl) in (5) is concave in bl if f (cb

l ) is a uniform
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distribution. Then, the optimal bid b�
l satisfies:

(ob
l + b�

l )πl = V b
l (db

l + b�
l )−

∫ db
l +b�

l

db
l −os

l

V b
l (cb

l ) f (cb
l )dcb

l . (7)

We also note that b�
l is a decreasing function of the price,

as we would intuitively expect:
Corollary 2: The optimal bid b�

l (πl) for each buyer l
decreases as πl increases if E(Ub

l | bl) is concave.
We again use the nonlinear Perron-Frobenius theory in [26]

to solve for b�
l in Algorithm 2.

Algorithm 2 Buyers’ Utility Maximization

Initialize b(0) ∈ R
L+.

1) The lth buyer updates the amount of data to be purchased:

bl (k + 1) = 1

πl
V b

l (db
l + bl (k))

− 1

πl

∫ db
l +bl (k)

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l − ob
l .

2) Normalize bl (k + 1):

bl (k + 1)← min

⎧
⎨

⎩
bl (k + 1),

(
θb

l (db
l + αb

l ob
l )

2db
l πl

) 1
αb

l − db
l

⎫
⎬

⎭
.

Lemma 2: Algorithm 2 converges geometrically fast to the
fixed point b�

l in (7) from any initial point bl(0) if b�
l ≤(

θb
l (1+ αb

l ob
l /db

l )/(2πl)
)1/αb

l − db
l .

We thus observe that the algorithm converges for buyers
with high utility scaling factors θb

l . We show in the next section
that buyers will likely satisfy this condition.

C. Selling or Buying Data

Users choose to become a buyer or seller based on the
utilities they can achieve from buying or selling data. Thus, if

E(Us
j | s�

j (p)) ≥ E(Ub
l | b�

l (ρ)), (8)

the user becomes a seller: the user’s maximum utility from
selling data (assuming all data is sold at the maximum price)
must be higher than the maximum utility from purchasing
data (assuming all data is bought at the minimum price).4

If (8) is reversed, the user becomes a buyer instead.
To illustrate this decision, we suppose that the user’s usage

follows the delta distribution. We then derive the following
necessary condition on users’ utility scaling factor θ in the
usage utility function (1):

Corollary 3: A user sells data when the scaling factor θ
satisfies θ ≤ θ̂ and buys data otherwise, where

θ̂ =
((

1− α

α

)(
(p − ρ)ds

j − ρdb
l

ρ
α−1
α − (p − ρ)

α−1
α

))α

. (9)

Thus, users with high utility scaling θ become buyers, while
those with low θ become sellers.

4Here we assume the user can always sell or buy all the bid data. More
generally, the user could estimate the maximum amount of data he or she could
sell or buy at a given price using past experience (Section IV); the amount of
data sold is the minimum of this quantity and the optimal bid amount. Users
buy (resp. sell) data if the resulting utility is higher for buying (selling) data
at the prices maximizing these utilities.

III. ISP TRADING POLICIES

The ISP will match buyers and sellers so as to optimize
its revenue, subject to constraints imposed by user bids.
We analyze the optimal matching in Section III-B before
considering whether the resulting revenue exceeds that of the
primary data market in Section III-C.

A. ISP Optimization

The ISP will often encounter sellers’ and buyers’ bids that
are not exactly aligned: for instance, if a seller offers more data
than any single buyer is willing to purchase. To facilitate the
matching of such bids, we suppose that the ISP can match
multiple buyers to multiple sellers. Since the ISP acts as
a middleman, this flexibility is transparent to all users. All
required accounting can be done internally by the ISP.

We denote the matching between buyers and sellers with a
matrix � = [	l j ]L ,J

l, j=1 ≥ 0. Each (l, j) entry of � represents
the percentage of the lth buyer’s demand (i.e., amount of data
bid) bl that is satisfied by the j th seller’s data supply s j ; thus,
	l j bl represents the amount of data that buyer l purchases
from seller j . Note that the ISP can take any bids from
users (e.g., s j = s�

j (σ j ) and bl = b�
l (πl)) in the matching

optimization.
1) Matching Constraints: The ISP’s matching is primarily

constrained by the buyer and seller bids. Buyer l’s bid of a
price πl and amount of data bl constrains the ISP matching in
two ways: first, the buyer will buy at most bl amount of data,
leading to the feasible set

B =
⎧
⎨

⎩
�

∣
∣
∣

J∑

j=1

	l j ≤ 1, l = 1, . . . , L

⎫
⎬

⎭
. (10)

We thus suppose that the buyer will accept matchings in which
her bid is only partially matched (Section II).

Second, the buyer’s price πl gives an upper bound on the
average purchase price of her data. We assume that the buyer
will pay this bid price πl for all data purchased; the amount
paid, πl

∑
j 	l j bl , must be at least as much as the data cost

specified by sellers’ bid prices (i.e., a cost σ j 	l j bl for each
seller j ). Mathematically, we have the feasible set


 =
⎧
⎨

⎩
�

∣
∣
∣

J∑

j=1

	l jσ j ≤ πl

J∑

j=1

	l j , l = 1, . . . , L

⎫
⎬

⎭
. (11)

If the total amount paid by the buyer exceeds the data cost,
the ISP keeps the excess as part of its bid revenue.

Similarly, seller j ’s bid of a price σ j and amount of data s j

implies that he will sell at most s j amount of data:

S =
{

�

∣
∣
∣

L∑

l=1

	l j bl ≤ s j , j = 1, . . . , J

}

. (12)

In return, the total money paid by all buyers for seller j ’s data∑
l 	l j blπl must be at least the cost of the data σ j

∑
l 	l j bl :

� =
{

�

∣
∣
∣

L∑

l=1

πl	l j bl ≥ σ j

L∑

l=1

	l j bl, j = 1, . . . , J

}

.

(13)
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Fig. 3. ISP revenue and user matching with ρ = 15, p = 60, s = (3, 2, 3, 2, 2)�, σ = (35, 45, 48, 48, 42)�, b = (2, 1, 3, 2, 2)� and π = (35, 45, 50, 35, 40)�.
Seller 1 and Buyer 3 offer the lowest and highest prices respectively, and can always trade all their data. Users with the highest selling price (Seller 3 and 4)
and the lowest purchasing price (Buyer 4) can trade data when ω is sufficiently large (Proposition 4).

Thus, the ISP must choose � ∈ B ∩
∩ S ∩�, which can be
written as a set of linear constraints as in (10)-(13).

Intuitively, if sellers and buyers bid sufficiently low and high
prices respectively, they can be matched to at least one other
user. We derive these price thresholds using (11) and (13):

Proposition 3 (Price Feasibility): If seller j sells data to at
least one buyer (

∑
l 	l j bl > 0), then his selling price σ j is

not higher than all buyers’ purchasing prices: σ j ≤ maxl πl .
Analogously, if buyer l purchases data from at least one

seller (i.e.,
∑

j 	l j > 0), then her purchasing price is not
lower than all sellers’ selling prices, i.e., πl ≥ min j σ j .

2) ISP Objective: The ISP’s objective in choosing a match-
ing � is to maximize its revenue from the secondary market.
We identify two sources of ISP revenue: “administration
revenue” and “bid revenue” (Figure 1).

The ISP’s revenue from the administration fee is pro-
portional to the volume of data traded, i.e., ρ

∑
l, j 	l j bl .

To calculate the bid revenue, we add the differences
between each buyer’s payment and each seller’s income:
∑

l

(
πl

∑
j 	l j bl −∑

j σ j 	l j bl

)
. From (11), this gap is

always positive. The ISP thus maximizes its revenue by
solving the linear program

maximize ωρ

J∑

j=1

L∑

l=1

	l j bl

+ (1− ω)

L∑

l=1

J∑

j=1

(	l j blπl −	l j blσ j )

subject to � ∈ B ∩ S ∩
 ∩�,

� ≥ 0,

variable: �. (14)

The parameter ω trades off between administration revenue
and bid revenue; its effect is our next subject of discussion.5

We use �� to denote the optimal solution to (14). We then
characterize the optimal solution �� affected by the ISP’s
choice of ω and user bids in the discussion below.

5We will show in Section III-C that the expected total data consumed in the
secondary market decreases with the volume of data traded. Thus, maximizing
the administration revenue is equivalent to minimizing the cost of handling
network traffic as well as to maximizing the ISP’s profit.

We note that, if a seller bids s̃ j > s�
j , this does not improve

his chance of having
∑

l 	�
l j b

�
l = s�

j at the optimal point
of (14), since buyers may bid lower than the price that the
seller is willing to accept or they may not have a large enough
demand to accommodate the seller’s offer. If buyers do have
sufficient demand to meet the seller’s bid, the seller may
have s�

j <
∑

l 	�
l j b

�
l = s̃ j , yielding suboptimal utility for

him. Similarly, buyers do not bid more than their optimal
amounts b�

l .

B. Matching Buyers and Sellers

Solving (14) with ω = 0.5, i.e., weighting the bid revenue
and administration revenue equally, maximizes the ISP’s total
revenue in the secondary market. However, changing ω can
lead to different matching outcomes. The ISP can thus incor-
porate other considerations into its matching objective.

Taking ω < 0.5, i.e., preferentially weighting the bid
revenue, is equivalent to reducing the administration fee ρ.
When the ISP preferentially weights its bid revenue, it attempts
to match buyers with high prices to sellers with low prices,
increasing the difference in the amount paid by buyers and sell-
ers. In contrast, when maximizing its administration revenue,
the ISP wishes to maximize the total amount of data traded.
Thus, for higher ω (i.e., preferential weight to administration
revenue) the ISP might match a seller to buyers with both
higher and lower prices; buyers’ prices πl would then average
out to equal the seller’s price σ j , and the seller would be able
to trade more data than if he had only been matched to buyers
with higher πl . Indeed, we can derive a necessary condition
on ω under which such matchings occur:

Proposition 4 (Matching Feasibility): If πl < σ j and

ω <
max j σ j −minl πl

ρ + (
max j σ j −minl πl

) , (15)

then the ISP will not match buyer l to seller j .
If ω = 1, then ω never satisfies (15), and low-price buyers

can be matched to sellers with higher prices. The amount
matched of a user’s bid thus depends on both the other users’
bids as well as the ISP’s matching objective.

Figure 3 illustrates the effect of varying ω with the matching
outcomes for five users. When the ISP preferentially weights
bid revenue, i.e., ω is small, only the seller with the lowest
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TABLE I

COMPARISON OF USER UTILITY AND ISP REVENUE IN THE PRIMARY MARKET AND THE SECONDARY MARKET

price (Seller 1) and the buyer with highest price (Buyer 3)
are matched. However, as ω increases, more users are matched;
in fact, for ω > 0.44, buyers 1 and 4 both purchase
data, even though their bid prices are lower than all the
sellers’ bid prices. Furthermore, as ω increases, the adminis-
tration revenue ρ

∑
j

∑
l 	l j bl increases, but the bid revenue∑

l
∑

j (	l j blπl −	l j blσ j ) decreases.
Even for ω = 1, some buyers and sellers may not be

matched to any user. We can in fact derive price thresholds
for buyers and sellers above (resp. below) which all the
buyers (sellers) can trade some data, and below (above) which
no buyer (seller) trades any data:

Proposition 5 (Price Competition): Suppose that the sellers
are sorted with price ascending (σ j+1 ≥ σ j ) and the buyers are
sorted with price descending (πl+1 ≤ πl ). Then �� is a block
matrix with all the non-zero entries in the northwest corner:

1) If the mth buyer is not matched with any
seller (

∑
j 	mj = 0), then all buyers l > m (i.e.,

whose bid prices are lower than that of buyer m) are
also unmatched: all the entries below an all-zero row
in �� are zero.

2) If the nth seller is not matched with any buyer
(
∑

l 	ln = 0), then all sellers j > n (i.e., whose bid
prices are higher than that of seller n) are also unmatched:
all the entries to the right of an all-zero column in ��

are zero.
The buyers and sellers compete with one another on the

basis of price. Buyers paying higher prices and sellers accept-
ing lower prices thus have more opportunities to trade data.

C. Comparison to the Primary Market

In the absence of a secondary market, the buyers would buy
overage data from the ISP instead of purchasing from other
users. Thus, in the secondary market, the buyers purchase more
data due to lower prices, while sellers consume less data to
gain revenue by selling data to buyers. Since the ISP receives
administration revenue in proportion to the amount of data
sold in the secondary market, its revenue might be larger than
the revenue earned in the primary market. We mathematically
formulate these differences in Table I, which compares users’
utilities, expected total data consumed, and ISP revenue in
both markets.

Figure 4 illustrates ISP and user behavior in the primary
and secondary markets for the simplified case of one buyer
and one seller. In the primary market, the buyers purchase

Fig. 4. As illustrated here for one seller and one buyer, users always increase
their utilities and the ISP can earn more revenue in the secondary market.

data from the ISP at the maximum price p. The lth buyer
thus maximizes her utility by purchasing b�

l (p) data from the
ISP. Hence, the revenue of the ISP in the primary market
is p

∑L
l=1 b�

l (p). Sellers do not participate in the primary
market, which is equivalent to letting σ j = ρ in the secondary
market: at this price, the seller does not earn any revenue
from selling data and loses utility if he sells data; therefore,
the j th seller’s utility in the primary market is calculated
when s�

j = 0. Hence, the expected amount of users’ data caps

consumed in the primary market is
∑J

j=1

∫ ds
j

ds
j−os

j
cs

j f (cs
j )dcs

j+
∑L

l=1

∫ db
l +b�

l (p)

db
l −ob

l
cb

l f (cb
l )dcb

l , as shown in the first column

and third row of Table I (if f (cs
j ) and f (cb

l ) are uniform
distributions).

In Figure 4, the one seller and the one buyer are matched
when their prices align (σ j = πl ). Thus, in the secondary
market, the lth buyer purchases b�

l (πl) amount of data, where
πl < p. Since b�

l (·) monotonically decreases with respect to
the price (Corollary 2), b�

l (p) < b�
l (πl) and the buyer bids

more data in the secondary than she would purchase in the
primary market. However, not all sellers’ and buyers’ bids are
always fully satisfied, i.e., the constraints in (10) and (12)
may not be tight at optimality. For example, the amount of
data offered by the seller in Figure 4 is less than the amount
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of data bid by the buyer, and then the buyer’s bid will be only
partially satisfied, i.e., 	�

l j bl(πl) < bl(πl). However, she may

still purchase b̂�
l (p) amount of overage data from the ISP, with

b̂�
l (p) chosen by maximizing the utility:

E(Ub
l | b̂l) =

∫ db
l +

∑J
j=1 	�

l j b�
l (πl)+b̂l

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l − b̂l p,

(16)

leading to (cf. the proof of Proposition 6)

b̂�
l (p) = max

⎧
⎨

⎩
b�

l (p)−
J∑

j=1

	�
l j b

�
l (πl), 0

⎫
⎬

⎭
. (17)

The buyer is then expected to consume the amount of

data
∫ db

l +
∑J

j=1 	�
l j b�

l (πl )+b̂�
l (p)

db
l −ob

l
cb

l f (cb
l )dcb

l in the secondary

market, where after trading, the buyer’s distribution of data
usage f may change. For instance, we have f (cb

l ) =
(

ob
l +

∑J
j=1 	�

l j b
�
l (πl)+ b̂�

l (p)
)−1

if it is a uniform dis-
tribution. On the other hand, if only part of seller j ’s
bid is matched, he is expected to consume the amount of

data
∫ ds

j−
∑L

l=1 	�
l j b�

l (πl )

ds
j−os

j
cs

j f (cs
j )dcs

j in the secondary market.

Similarly, if it is a uniform distribution, the seller’s usage dis-

tribution becomes f (cs
j ) =

(
os

j −
∑L

l=1 	�
l j b

�
l (πl)

)−1
. Hence,

the expected total data consumed in the secondary market is
computed as in Table I.

Although buyers would purchase more data in the secondary
market, the data is transferred from sellers to buyers. Even
though buyers may still purchase overage data from the ISP
when

∑J
j=1 	�

l j < 1, we can see from (17) that they purchase
less overage data than in the primary market. This is because
after trading, buyers purchase overages starting from larger
data caps:

Proposition 6 (Traffic decrease): If user usage follows a
uniform distribution, the expected total data consumed in the
secondary market is less than that in the primary market.
Furthermore, if the users’ usage distributions are delta distri-
butions as in Sections II-A and II-B, they always use up all
of the data that they have after trading, and thus the statement
in Proposition 6 also holds. From Table I, we can see that the
expected data consumed in the secondary market is a piecewise
linear decreasing function of

∑L
l=1

∑J
j=1 	�

l j b
�
l (πl), i.e., the

volume of data traded, and that the data trading can in fact
avoid the extra traffic due to overage purchases if buyers can
purchase at least the amount of overage data that they would
buy in the primary market in the secondary market. Thus,
in order to account for the traffic cost in (14), we can simply
adjust the weight of the administration revenue.

We notice that ISP revenue when offering data trading con-
sists of administration revenue, bid revenue, and the buyers’
overage purchase if their bids are not fully matched, while ISP
revenue in the primary market only has the buyers’ overage
charge. However, the unit price of the overage data is higher
than the price that the buyers pay to the sellers, leading the
buyers to purchase more data in the secondary market than

they would in the primary market. Thus, although the ISP
loses revenue from overage fees, it may gain more revenue
from the administration fees and bid revenue. If we suppose
the best matching result, i.e., all constraints (10)-(13) are tight,
the secondary market may allow the ISP to recover the revenue
lost from the primary market:

Proposition 7 (Revenue benefit): A necessary condition for
the ISP to earn more revenue in the secondary market than in
the primary market is

p

ρ
≤ min

l,...,L

b�
l (ρ)

b�
l (p)

. (18)

For instance, if the buyers’ future usage distributions are
delta distributions as in Section II-B, then b�

l (πl) =
(πl/θ

b
l )−1/αb

l − db
l . Thus, b�

l (ρ)/b�
l (p) > (p/ρ)1/αb

l > p/ρ,
and the ISP can earn more revenue in the secondary market.
Proposition 7 show that the administration fee has an impact
on the ISP revenue, and it should not be set too low.

IV. DYNAMIC DATA TRADING

A sustainable secondary market must allow buyers and
sellers to submit new bids at any time, thus necessitating the
ISP to run multiple matchings in a given month. Moreover,
buyers and sellers can actively learn from each matching
outcome: for instance, if a seller is not matched to any buyer,
this seller can lower his price in the next bid to attract
buyers.6 We incorporate these initial prices and price adjust-
ments responding to the matching outcome in the following
dynamics, which are formalized in Algorithm 3:

1) Users can submit their bids to the ISP at any time
during the month. Initially, any users who are joining
the secondary market for the first time choose πl(0)
and σ j (0). They then calculate the optimal amounts of
data to bid bl(0) = b�

l (πl) and s j (0) = s�
j (σ j ) as in

Algorithms 1 and 2. Optimistic buyers (resp. sellers)
might choose their initial prices as πl(0) = ρ (resp.
σ j (0) = p), though buyers and sellers would likely have
to raise and lower their prices respectively before they
could be matched. Risk-averse sellers and buyers, on the
other hand, would respectively abide by the minimum
and maximum prices to ensure that they will be matched.
Other users would leverage their past experience in prior
months, choosing a price in [ρ, p].

2) Upon receiving bids from at least one seller and one
buyer, the ISP runs the matching optimization (14). The
participants in each iteration k may be different: users
with their bids fulfilled in the last matching outcome,
i.e.,

∑
l 	l j (k+1)bl(k) = s j (k) or

∑
j bl(k)	l j (k+1) =

bl(k), will quit the matching, and new users may join
the data trading. The ISP can update all user bids
that it receives before rerunning the matching. Thus,
the ISP must run many matchings over a month. As such,

6Note that this learning is not perfect; the set of user bids can and likely
will change from matching to matching, so the user can only estimate, not
deterministically predict, his or her matching outcome from past experience.
Moreover, the user’s feedback from past matchings is limited to the amount
of data successfully bought or sold, which is likely insufficient to deduce the
distributions of other users’ bids or the ISP’s matching algorithm.
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Fig. 5. Illustration of the data trading framework in Algorithm 3 with five sellers and five buyers. The parameter setting is as follows: ρ = 15, ε = 5, p = 60,
s(0) = (2, 2, 2, 2, 2)�, σ (0) = (52, 54, 56, 58, 60)�, b(0) = (1, 1, 2, 3, 3)� and π(0) = (42, 39, 36, 33, 30)�. We plot the percentage of each buyer/seller’s
total amount of data bid that has been successfully matched at each iteration. In (a) and (b), ω = 0; while in (c) and (d), ω = 1.

Algorithm 3 Data Trading Dynamics
At k = 0, the j th seller initializes σ j (0) and s�

j (σ j (0)), and the lth
buyer initializes πl(0) and b�

l (πl(0)).

while L(k) > 0 and J (k) > 0 do
1) Upon receiving bids

(
bl (k), πl(k)

)
and

(
s j (k), σ j (k)

)
from

L(k) buyers and J (k) sellers, the ISP updates the constraint sets
B ≡ B(k), 
 ≡ 
(k), S ≡ S(k) and � ≡ �(k).

2) The ISP computes �(k + 1) by solving (14) with L(k), J (k),
s j (k), σ j (k), bl (k), πl (k) as L , J , s j , σ j , bl , πl .

3) Each seller j of all J (k + 1) = J (k) sellers updates the bid
price and amount of data:
if

∑
l 	l j (k + 1)bl (k) < s j (k) then

ds
j (k + 1)← ds

j (k)−∑
l 	l j (k + 1)bl (k),

os
j (k + 1)← os

j (k)−∑
l 	l j (k + 1)bl (k),

σ j (k + 1)← max{σ j (k)− εs
j (k), ρ},

Run Algorithm 1 to obtain s j (k + 1).
end if
if

∑
l 	l j (k + 1)bl (k) = s j (k) then

Transaction is successful: J (k + 1)← J (k + 1)− 1.
end if
4) Each buyer l of all L(k + 1) = L(k) buyers updates the bid
price and amount of data:
if

∑
j bl (k)	l j (k + 1) < bl (k) then

db
l (k + 1)← db

l (k)+∑
j bl (k)	l j (k + 1),

ob
l (k + 1)← ob

l (k)+∑
j bl (k)	l j (k + 1),

πl (k + 1)← min{πl (k)+ εb
l (k), p},

Run Algorithm 2 to obtain bl (k + 1).
end if
if

∑
j bl (k)	l j (k + 1) = bl (k) then

Transaction is successful: L(k + 1)← L(k + 1)− 1.
end if
5) New sellers and buyers submit bids to the ISP:
A new seller submits bid: J (k + 1)← J (k + 1)+ 1.
A new buyer submits bid: L(k + 1)← L(k + 1)+ 1.
6) k ← k + 1.

end while

the number of matchings can vary from month to month
depending on how frequently users submit bids as well
as how fast their bids are fulfilled.

3) Users respond to the matching outcome from the ISP.
In each iteration k, if only a portion of the bid is
matched, the buyers and sellers increase and decrease
their prices by εb

l (k) and εs
j (k) respectively, subject

to the constraints that πl(k), σ j (k) ∈ [ρ, p]. They
then recompute the amounts of data to bid with these
new prices and submit the new bids to the ISP. Users
can set ε based on their transaction history and their

risk preferences: a larger ε changes the price more,
increasing the likelihood of being matched but lowering
their utilities.

V. NUMERICAL EVALUATION

A. Trading Dynamics

We now analyze the data trading dynamics in Algorithm 3
with a five-user example. Figure 5 shows the fractions of their
total bids that each seller and buyer trades in each iteration.
In Figures 5(a) and 5(b), ω = 0 (i.e., the ISP optimizes its bid
revenue), while in Figures 5(c) and 5(d), ω = 1 (optimizing
the administration revenue). The sellers and buyers are ordered
respectively in increasing and decreasing order of price.

As shown in Figures 5(a) and 5(c), the matching
optimization always matches the sellers with lower prices
first; the sellers finish selling their bids in increasing order
of their prices. Conversely, as shown in Figures 5(b) and 5(d),
the matching optimization always matches the buyers with
higher prices first, and the buyers finish purchasing their bids
in decreasing order of their prices. Thus, buyers with higher
price bids and sellers with lower price bids are more likely
to be matched. Moreover, the users in Figures 5(c) and 5(d)
(ω = 1) are all matched one iteration earlier than those
in Figures 5(a) and 5(b) (ω = 0): the ISP matches more
users when optimizing administration revenue rather than bid
revenue.

In Figure 6, we suppose that new users enter the market
at the third time slot. One new seller submits a 2GB bid
with a price higher than the other sellers’ highest price; at the
same time, one new buyer submits a 2GB bid, with a price
lower than the other buyers’ lowest price. These prices reflect
the fact that new participants do not have the experience to
realistically estimate the amount of data they can buy or sell at
different prices. However, by adjusting their prices the users
adapt quickly: the new seller and buyer finish their trading
within three time slots.

B. Experiments With User Data

We now simulate Algorithm 3 using real-world data usage.
Our data comes from 100 mobile users of a U.S. ISP from
January to December 2013. The data contains in-network
RADIUS records at a session level for each user and their
monthly data plans (i.e., data caps and overage fees).

We classify the users as sellers and buyers using (9). Each
user is assumed to have a uniform distribution of future usage.
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Fig. 6. Matching in successive timeslots (Algorithm 3) with parameters as in Figure 5. One new buyer and one new seller join the market at the third time
slot. In (a) and (b), ω = 0; while in (c) and (d), ω = 1.

Fig. 7. The ISP usually but not always gains revenue in the secondary compared to the primary market (ρ = 2, p = 4, αs
j = αb

l = 0.6, θ s
j = 3.3, θb

l = 9).

Fig. 8. The overall network traffic in the secondary market is less than that in the primary market (parameters as in Figure 7).

Fig. 9. Buyers and sellers always increase their utilities in the secondary market (parameters as in Figure 7).

Figure 7(a) shows the distribution of buyer and seller bids over
all twelve months; we see that sellers’ bids are generally much
smaller than buyers’, as some buyers bid an enormous amount
of data (e.g., for regular HD video streaming). However, there
are fewer buyers than sellers. In each month, the users keep
trading as described in Algorithm 3 until either sellers’ or buy-
ers’ bids are all met. We do not consider the case that buyers
may purchase overage data if their bids can only be partially
satisfied (except in Figure 8).

We calculate the total bid and administration revenue and
the resulting total traffic in the network for each month,

and compare them to those of the primary market in
Figures 7 and 8 respectively. For the purpose of simulation,
we suppose a uniform distribution for user usage in both
primary and secondary markets. As expected, Figure 8 shows
that overall network traffic in the secondary market is reduced
compared to the primary market. In most months, the ISP’s
administration revenue alone is larger than the revenue from
the primary market due to a large increase in sellers’ and
buyers’ bids matched (Proposition 6). In a few months, e.g.,
June to September, the primary market yields more revenue
and interestingly, traffic in the secondary market drops more:
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although the sellers do not bid enough data to completely
satisfy buyers’ demand in the secondary market, they fulfill
the buyers with the amount of their overage purchase in the
primary market, leading to b̂�

l (p) = 0. We can also observe
from Figure 7 that the gap between the total revenue and
administration revenue (i.e., the bid revenue) in the secondary
market is slightly larger when ω = 0 as in Figure 7(b) than
when ω = 1 as in Figure 7(c). We observe a similar pattern
for the gap between the total amounts of network traffic in
the primary and secondary markets as in Figure 8: at ω = 0,
the ISP explicitly maximizes its bid revenue and makes less
effort to maximize the total amount of data traded.

Figure 9 shows the total utilities, the utilities of the buyers
and the utilities of the sellers in the primary market and sec-
ondary market. As we would expect, the utilities of the sellers
and buyers in the secondary market are always larger than
those in the primary market. The amount of this differential,
however, varies from month to month.

VI. CONCLUSION

Mobile data trading brings forth new challenges in network
economics, since traded data plans in the secondary market
affect how users and the ISP behave strategically in con-
junction with pricing in the primary market. We first derive
the optimal amounts of data in users’ bids, depending on the
bidding prices that sellers and buyers choose to bid in the
secondary market. We take into account uncertainty in users’
usage and the amounts of data caps that they need. We then
establish a necessary condition under which a user will choose
to buy or sell data in the secondary market.

The ISP matches the buyers and sellers in the secondary
market by solving a linear program to maximize its revenue
subject to users’ bid constraints. We compare the optimal
matchings when bid or administration revenue is emphasized
and derive a necessary condition under which the ISP gains
revenue in the secondary market as compared to the primary
market. Furthermore, we show that the total amount of data
consumed in the secondary market is less than that of the
primary market, thus benefitting ISPs’ operational costs, but
that user demands are better matched to their preferred data
caps at the prices that they are willing to pay. With dynamic
matchings over multiple times in the month, we examine how
users adapt their bids over time to increase the chance of being
matched. Finally, we simulate these dynamics over one year
of usage data from a U.S. ISP, demonstrating a unique and
sustainable market for trading mobile data that is beneficial
both for the ISP and for users who desire customized pricing
schemes.

APPENDIX

A. Nonlinear Perron-Frobenius Theory in [26]

Let ‖·‖ be a monotone norm on R
L . For a concave mapping

f : RL+ → R
L+ with f (z) > 0 for z ≥ 0, the following state-

ments hold. The conditional eigenvalue problem f (z) = λz,
λ ∈ R, z ≥ 0, ‖z‖ = 1 has a unique solution (λ∗, z∗), where
λ∗ > 0, z∗ > 0. Furthermore, limk→∞ f̃ (z(k)) converges
geometrically fast to z∗, where f̃ (z) = f (z)/‖ f (z)‖.

B. Proof of Proposition 1

Proof: Taking the second-order derivative of E(Us
j | s j )

in (2) with respect to s j , we have:

d2 E(Us
j | s j )/ds2

j =
(ds

j − s j )
2−αs

j

(1− αs
j )(2− αs

j )(o
s
j − s j )3 �(os

j ),

where

�(os
j ) =

2(ds
j − s j )

2

(ds
j − s j )2 −

2(2− αs
j )(o

s
j − s j )(ds

j − s j )

(ds
j − s j )2

+ (1− αs
j )(2− αs

j )(o
s
j − s j )

2

(ds
j − s j )2 − 2

(
ds

j − os
j

ds
j − s j

)2−αs
j

.

Next, we show that �(os
j ) decreases with os

j by taking the
first-order derivative of �(os

j ), given by:

d�(os
j)/dos

j

= 2(2− αs
j )

(ds
j − s j )2

(
− (ds

j − s j )+ (1− αs
j )(o

s
j − s j )

+ (ds
j − os

j )
1−αs

j (ds
j − s j )

αs
j

)

= 2(2− αs
j )

(ds
j − s j )2

(
− αs

j (d
s
j − s j )− (1− αs

j )(d
s
j − os

j )

+ (ds
j − os

j )
1−αs

j (ds
j − s j )

αs
j

)
≤ 0,

where the inequality holds due to the inequality of arithmetic-
geometric means that αs

j (d
s
j − s j ) + (1 − αs

j )(d
s
j − os

j ) ≥
(ds

j−os
j )

1−αs
j (ds

j−s j )
αs

j for all αs
j ∈ (0, 1). Since os

j ∈ [s j , ds
j ],

we have �(os
j ) ≤ �(os

j = s j ) = 0, which also means
d2 E(Us

j | s j )/ds2
j ≤ 0. Thus, E(Us

j | s j ) is concave.

C. Proof of Corollary 1

Proof: Consider two prices for seller j , σ 1
j and σ 2

j ,
with σ 1

j < σ 2
j . Then from (4), the optimal amounts sold s�

j
satisfy

d

ds j

(∫ ds
j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j

)∣
∣
∣
∣
∣
s�

j (σ
i
j )

= ρ − σ i
j .

for i = 1, 2. Since ρ − σ 1
j > ρ − σ 2

j , we have

d

ds j

(∫ ds
j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j

)∣
∣
∣
∣
∣
s�

j (σ
1
j )

>
d

ds j

(∫ ds
j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j

)∣
∣
∣
∣
∣
s�

j (σ
2
j )

.

Since
∫ ds

j−s j

ds
j−os

j
V s

j (c
s
j ) f (cs

j )dcs
j is a concave function by

Proposition 1, its first derivative is a decreasing function of s j .

Thus, s�
j

(
σ 2

j

)
> s�

j

(
σ 1

j

)
as desired.
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D. Proof of Lemma 1

Proof: We first prove below that the self-mapping function
at Step 1 of Algorithm 1 is concave when s j ≤ ds

j −(
1+αs

j os
j/ds

j
2(σ−ρ)

)1/αs
j

. From (4), we have the following self-

mapping function:

s j = g(s j ) = os
j

+ 1

σ j − ρ

(∫ ds
j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j − V s

j (d
s
j − s j )

)

,

i.e., the self-mapping function at Step 1 of Algorithm 1. Hence,
g(s j ) is a concave self-mapping function if the following
function h(s j ) is concave:

h(s j ) =
∫ ds

j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j − V s

j (d
s
j − s j ).

Taking the second-order derivative of h(s j ) with respect to s j ,
we have:

h′′(s j ) = 2(os
j − s j )

−2
∫ ds

j−s j

ds
j−os

j

V s
j (c

s
j ) f (cs

j )dcs
j

− 2(os
j−s j )

−2V s
j (d

s
j−s j )+(os

j−s j )
−1V s

j
′(ds

j−s j )

− V s
j
′′(ds

j−s j ).

Combining (7) with (19), we can obtain:

h′′(s j ) = −2(os
j − s j )

−1(σ j − ρ)

+ (os
j − s j )

−1V s
j
′(ds

j − s j )− V ′′(ds
j − s j )

= (os
j − s j )

−1

(ds
j − s j )

αs
j

(

− 2(σ j − ρ)(ds
j − s j )

αs
j

+ θ s
j + θ s

j α
s
j

os
j − s j

ds
j − s j

)

. (19)

Due to that s j ≤ ds
j −

(
θ s

j (1+αs
j os

j/ds
j )

2(σ−ρ)

)1/αs
j

, we have

(σ − ρ)(ds
j − s j )

αs
j ≥ θ s

j

2

(

1+ αs
j

os
j

ds
j

)1/αs
j

⇒ (σ − ρ)(ds
j − s j )

αs
j

≥ θ s
j

2

(

1+ αs
j

os
j − s j

ds
j − s j

)1/αs
j

,

which implies that h′′(s j ) ≤ 0. Therefore, h(s j ) is con-
cave so that g(s j ) is a concave self-mapping. Furthermore,
the normalization at Step 2 of Algorithm 1 is a monotone
norm constraint of s j . Then, the nonlinear Perron-Frobenius
theory (cf. Appendix A) can be leveraged for the algorithm
design.

E. Proof of Proposition 2

Proof: Taking the second-order derivative of E(Ub
l | bl)

in (5) with respect to bl , we have:

dE2(Ub
l | bl)/db2

l =
(db

l + bl)
2−αb

l

(1− αb
l )(2− αb

l )(ob
l + bl)

�(ob
l ),

where

�(ob
l ) =

2(db
l + bl)

2

(db
l + bl)2

− 2(2− αb
l )(ob

l + bl)(db
l + bl)

(db
l + bl)2

+ (1− αb
l )(2− αb

l )(ob
l + bl)

2

(db
l + bl)2

− 2

(
db

l −ob
l

db
l +bl

)2−αb
l

.

Next, we show that �(ob
l ) decreases with ob

l by taking the
first-order derivative of �(ob

l ), given by:

d�(ob
l )/dob

l

= 2(2 − αb
l )

(db
l + bl)2

(
− (db

l + bl)+ (1− αb
l )(ob

l + bl)

+ (db
l − ob

l )
1−αb

l (db
l + bl)

αb
l

)

= 2(2 − αb
l )

(db
l + bl)2

(
− (1− αb

l )(db
l − ob

l )− αb
l (db

l + bl)

+ (db
l − ob

l )
1−αb

l (db
l + bl)

αb
l

)
,

where the inequality holds due to the inequality of arithmetic-
geometric means that (1 − αb

l )(db
l − ob

l ) + αb
l (db

l + bl) ≥
(db

l −ob
l )1−αb

l (db
l +bl)

αb
l for all αb

l ∈ (0, 1). Since ob
l ∈ [0, ds

j ],
we have �(ob

l ) ≤ �(ob
l = 0) ≤ �(ob

l = −bl) = 0, which also
means dE2(Ub

l | bl)/db2
l ≤ 0. Thus, E(Ub

l | bl) is concave.

F. Proof of Corollary 2

Proof: Consider two prices for buyer l, π1
l and π2

l , with
π1

l < π2
l . Then from (4), the optimal amounts sold b�

l satisfy

d

dbl

(∫ db
l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)∣
∣
∣
∣
∣
b�

l (π
i
l )

= π i
l .

for i = 1, 2. Since π1
l < π2

l , we have

d

dbl

(∫ db
l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)∣
∣
∣
∣
∣
b�

l (π1
l )

<
d

dbl

(∫ db
l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)∣
∣
∣
∣
∣
b�

l (π
2
l )

.

Since
∫ db

l +bl

db
l −ob

l
V b

l (cb
l ) f (cb

l )dcb
l is a concave function by

Proposition 1, its first derivative is a decreasing function of bl .
Thus, b�

l

(
π1

l

)
> b�

l

(
π2

l

)
as desired.

G. Proof of Lemma 2

Proof: Similar to the proof in Appendix D, we first
prove below that the self-mapping function at Step in of

Algorithm 2 is concave when bl ≤
(

1+αb
l ob

l /db
l

2πl

)1/αb
l

.

From (7), we have the following self-mapping function:

bl = g(bl)

= 1

πl

(

V b
l (db

l + bl)−
∫ db

l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)

− ob
l ,
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i.e., the self-mapping function at Step of Algorithm 2. Hence,
g(bl) is a concave self-mapping function if the following
function h(bl) is concave:

h(bl) = V b
l (db

l + bl)−
∫ db

l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l .

Taking the second-order derivative of h(bl) with respect to bl ,
we have:

h′′(bl) = −2(ob
l + bl)

−2
∫ db

l +bl

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

+ 2(ob
l +bl)

−2V b
l (db

l +bl)−(ob
l +bl)

−1V b
l
′
(db

l +bl)

+ V b
l
′′
(db

l + bl). (20)

Combing (7) with (20), we can obtain:

h′′(bl) = 2(ob
l + bl)

−1πl − (ob
l + bl)

−1V b
l
′
(db

l + bl)

+ V b
l
′′
(db

l + bl)

= (ob
l + bl)

−1

(db
l + bl)

αb
l

(

2πl(d
b
l + bl)

αb
l

− vθb
l − θb

l αb
l

ob
l + bl

db
l + bl

)

.

Due to that bl ≤
(

θb
l (1+αb

l ob
l /db

l )

2πl

)1/αb
l − db

l , we have

2πl(d
b
l + bl)

αb
l ≤ θb

l

(

1+ αb
l

ob
l

db
l

)

⇒ 2πl(d
b
l + bl)

αb
l ≤ θb

l

(

1+ αb
l

ob
l + bl

db
l + bl

)

,

which implies that h′′(bl) ≤ 0. Therefore, h(bl) is concave so
that g(bl) is a concave self-mapping. Furthermore, the normal-
ization at Step 2 of Algorithm 2 is a monotone norm constraint
of bl . Then, the fixed-point algorithm converges to the unique
optimal solution by leveraging the nonlinear Perron-Frobenius
theory (cf. Appendix A).

H. Proof of Corollary 3

Proof: We consider the special cases of a delta distribution
that are respectively centered at ds

j−s j if the user is a seller and
db

l +bl if the user is a buyer. Unlike uniform distribution, users
could gain the most usage utility by consuming their entir data.
As the utility functions for a seller and a buyer are given in (3)
and (6) respectively, the optimality conditions in (4) and (7)

can be rewritten respectively as s�
j = ds

j −
( 1

θ (σ j − ρ)
)− 1

α and

b�
l =

(πl
θ

)− 1
α −db

l . Then, we obtain the maximum utilities for
the seller and the buyer, given respectively by

Eδ(U
s
j | s�

j (σ j )) = α

1− α
(σ j − ρ)1− 1

α θ
1
α + (σ j − ρ)ds

j ,

and

Eδ(U
b
l | b�

l (πl)) = α

1− α
π

1− 1
α

l θ
1
α − πld

b
l .

By substituting Eδ(Us
j | s�

j (p)) and Eδ(Ub
l | b�

l (ρ)) back
into (8), we can obtain (9).

I. Proof of Proposition 3

Proof: Due to
∑J

j=1 	l j bl ≥ 0 and
∑L

l=1 	l j bl ≥ 0,
the inequality constraints in (11) and (13) can be rewritten
respectively, as:

ξ1σ1 + ξ2σ2 + · · · + ξJ σJ ≤ πl,

where ξ j = 	l j bl/
(∑J

j=1 	l j bl

)
and we have ξ1 + ξ2 +

. . . , ξJ = 1, and,

η1π1 + η2π2 + · · · + ηLπL ≥ σ j ,

where ηl = 	l j bl/
(∑L

l=1 	l j bl

)
and we have η1 + η2

+ · · · + ηL = 1. In other words, πl should be higher than
at least one nonnegative linear combination of all the selling
prices σ1, . . . , σJ , and σ j should be lower than at least one
nonnegative linear combination of all the purchasing prices
πl, . . . , πL . Since we also have min

1�ξ=1,ξ≥0
{ξ1σ1+ ξ2σ2+· · ·+

ξJ σJ } = min
j=1,...,J

{σ j } and max
1�η=1,η≥0

{η1π1 + η2π2 + · · · +
ηLπL} = max

l=1,...,L
{πl}, this completes the proof.

J. Proof of Proposition 4

Proof: We form the Lagrangian for (14) by introduc-
ing the dual variables Z ∈ R

L×J+ , x ∈ R
L+, y ∈ R

J+,
μ ∈ R

L+ and ν ∈ R
J+ respectively for the constraints

	l j ≥ 0, l = 1, . . . , L, j = 1, . . . , J ,
∑J

j=1 	l j bl ≤
bl, l = 1, . . . , L,

∑L
l=1 	l j bl ≤ s j , j = 1, . . . , J ,

∑J
j=1 	l j blσ j ≤ πl

(∑J
j=1 	l j bl

)
, l = 1, . . . , L, and

∑L
l=1 	l j blπl ≥ σ j

(∑L
l=1 	l j bl

)
, j = 1, . . . , J . Then,

we can obtain the Lagrangian for (14), given by:

L(�, Z, x, y,μ, ν)

= ωρ

J∑

j=1

L∑

l=1

	l j bl

+ (1− ω)

L∑

l=1

J∑

j=1

(	l j blπl −	l j blσ j )+
L∑

l=1

J∑

j=1

Zl j	l j

−
L∑

l=1

J∑

j=1

xl(	l j bl − bl)−
L∑

l=1

J∑

j=1

y j (	l j bl − s j )

−
L∑

l=1

J∑

j=1

μl(	l j blσ j −	l j blπl)

−
L∑

l=1

J∑

j=1

ν j (	l j blσ j −	l j blπl). (21)

Taking first-order derivative of (21) with respect to 	l j and
setting it to zero, we have the following equation at optimality:

Z�
l j = (x�

l + y�
j − ωρ)bl +

(
μ�

l + ν�
j + (1− ω)

)
(σ j − πl)bl .

(22)

If ∃l, j such that 	�
l j > 0 and σ j > πl , we have Z�

l j = 0 and

(22) can then be rewritten as ω = (x�
l +y�

j )+(μ�
l+ν�

j+1)(σ j−πl )

ρ+(σ j−πl )
,
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which leads to the inequality:

ω ≥ σ j − πl

ρ + (σ j − πl)
, (23)

due to the nonnegativity of the dual variables x�
l , y�

j , μ�
l and ν�

j .
Then, (15) is sufficient for (23).

K. Proof of Proposition 5

Proof: By inspecting the Lagrangian for (14) formed
in (21) and the optimality condition derived in (22), we estab-
lish the following proof. If the lth buyer is not matched
with any seller, we have

∑J
j=1 	l j bl = 0. By using the

complementary slackness at optimality, we have 	�
l j Z�

l j = 0
and 	�

l j = 0, j = 1, . . . , J ⇒ Z�
l j > 0, j = 1, . . . , J .

We can also derive from x�
l (bl − ∑J

j=1 	�
l j bl) = 0 and

μ�
l

∑J
j=1(	

�
l j blπl − 	�

l j blσ j ) = 0 that x�
l = 0 and μ�

l > 0.

For the mth buyer where πm < πl , the price constraint
∑J

j=1 	�
mj bmσ j ≤ πm

(∑J
j=1 	�

mj bm

)
is tighter than the

price constraint for the lth buyer so we have μ�
m > μ�

l .
Since x�

m ≥ x�
l = 0 always holds for all the dual variables,

we can conclude from the above derivation that Z�
mj/bm ≥

Z�
l j/bl > 0, j = 1, . . . , J (cf. (22)). Hence, we have

Z�
mj > 0, j = 1, . . . , J , i.e., the mth buyer, whose purchasing

price πm is lower than πl , is also unmatched. Similar proof
can be applied to the second bullet point for the sellers in
Proposition 5.

L. Proof of Proposition 6

Proof: We first show how to calculate the result in (17).
To maximize the utility in (16), the overage data purchased
when

∑J
j=1 	�

l j < 1 satisfies

d

db̂l

(∫ db
l +

∑J
j=1 	�

l j b�
l (πl )+b̂l

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)

= p

⇒ d

h(b̂l)

h(b̂l)

db̂l

(∫ db
l +h(b̂l )

db
l −ob

l

V b
l (cb

l ) f (cb
l )dcb

l

)

= p,

where h(b̂l) =∑J
j=1 	�

l j b
�
l (πl)+ b̂l and h(b̂l)/db̂l = 1. Thus,

at optimality of (16), we have h(b̂�
l (p)) = b�

l (p), leading
to (17). From (17), we can observe that b̂�

l (p) < b�
l (p).

Comparing the expected total data consumed in primary and
secondary markets shown in Table I, we can easily find that
the expected total data consumed in the secondary market is
less than that in the primary market due to b̂�

l (p) < b�
l (p).

M. Proof of Proposition 7

Proof: Suppose we have the best matching result by
solving (14), which means all constraints (10)-(13) are tight,
then we have

∑J
j=1 s�

j (σ j ) =∑L
l=1 b�

l (πl) ≤∑L
l=1 b�

l (ρ) and
no revenue from the buyer/seller price difference. If revenue
of the secondary market is higher than the revenue of the
primary market, we have ρ

∑J
j=1 s�

j (σ j ) ≥ p
∑L

l=1 b�
l (p).

Then, ρ
∑L

l=1 b�
l (ρ) ≥ p

∑L
l=1 b�

l (p) implies (18).
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