
Virtual Redundancy for Active-Standby Cloud Applications

Gueyoung Jung1, Parisa Rahimzadeh2, Zhang Liu2, Sangtae Ha2, Kaustubh Joshi1, and Matti Hiltunen1

1AT&T Labs – Research 2University of Colorado Boulder

Abstract—VM redundancy is the foundation of resilient cloud
applications. While active-active approaches combined with load
balancing and autoscaling are usually resource efficient, the
stateful nature of many cloud applications often necessitates
1+1 (or 1+n) active-standby approaches. Keeping the standbys,
however, could result in inefficient utilization of cloud resources.
We explore an intriguing cloud-based solution, where standby
VMs from active-standby applications are selectively overbooked
to reduce resources reserved for failures. The approach requires
careful VM placement to avoid a situation where multiple
standby VMs activate simultaneously on the same host and
thus cannot get the full resource entitlement. Indeed today’s
clouds do not have this visibility to the applications. We rectify
this situation through ShadowBox, a novel redundancy-aware
VM scheduler that optimizes the placement and activation of
standby VMs, while assuring applications’ resource entitlements.
Evaluation on a large-scale cloud shows that ShadowBox can
significantly improve resource utilization (i.e., more than 2.5
times than traditional approaches) while minimizing the impact
on applications’ entitlements.

I. INTRODUCTION

The active-standby redundancy is one of the oldest [1] yet
most ubiquitously used design patterns for both fault tolerance
and disaster recovery (DR) of modern computer systems. It is
parameterized as 1+n redundancy in which one of n cold,
warm, or hot spares takes over upon the failure of the single
active primary. A range of values of n are common, from
1+1 for disaster recovery, 1+2 to maintain redundancy during
lengthy repairs and upgrades, (1+1) + (1+1) (effectively, 1+3)
multi-site designs in which an 1+1 standby site backs up
another 1+1 primary site, to general 1+n systems [2] [3].

Unfortunately, inefficient utilization of resources is standby
redundancy’s Achilles heel. Keeping the standbys idle (except
for synchronizing state) during normal operation results in 50
% (for 1+1 systems) or more of a system’s peak capacity
being wasted. The active-active systems in which all replicas
are utilized during normal operation can eliminate wastage, but
such designs are practical mostly when replicas are stateless,
or contain state that can be shared (e.g., key-value stores). For
most other stateful systems, standby redundancy continues to
be a viable option despite its limitations.

In this paper, we make the observation that the idle wastage
of standby redundancy could be mostly eliminated by over-
booking standbys from multiple independent cloud applica-
tions onto the same hosting resources. However, while doing
so, we must minimize the chance that multiple standbys should

be activated at the same time on the same host due to common
mode failure affecting their active primaries. This situation
would lead to performance degradation or even inability of
the standby to take the active role due to resource shortage
(i.e., losing its entitlement). Fortunately, unlike traditional DR
providers who do not know the failure modes of their cus-
tomers, cloud computing platforms have visibility and control
over virtual machine (VM) placement and failure modes. Thus,
through careful placement of active and standby VMs followed
by judicious selection of which standby VM to activate, a
cloud platform can minimize the probability of concurrent
activation of multiple standby VMs on the same host. Note
that such redundancy-driven overbooking can only be done
by the platform – tenants do not have the cross application
visibility nor the infrastructure topology visibility necessary.

We propose ShadowBox, a novel multi-datacenter VM
placement scheduler that uses these observations to over-
book standby VMs from multiple independent applications
efficiently with minimal loss in their resource entitlement
guarantees and availability by co-optimizing the datacenter,
rack, and server level placement of active and standby VMs.
On active VM failure, ShadowBox can also select which
standby VM to activate if more than one standby VMs are
available. Using the physical topology of the hierarchical
cloud infrastructure that consists of servers, racks, and data
centers, ShadowBox can identify common mode failures that
can impact multiple VMs at the same time. Importantly,
ShadowBox uses additional application information compared
to traditional cloud schedulers; it uses metadata from the
applications identifying which VMs are part of an active-
standby cluster and the entitlement assurance rate (EAR) for
the application. The metadata can additionally include the
placement diversity level (i.e., either cross-servers, cross-racks,
and cross-data centers replications that lead to different levels
of availability).

Despite its close philosophical relationship to the vast
literature on parity-coded storage systems such as [4], we are
unaware of any other work that has explored these ideas in
the context of VM scheduling on public or private clouds.
Previous cloud overbooking studies such as [5] and [6] have
exclusively focused on mixing complementary workloads or
leveraging time-of-day workload patterns, but these methods
are often brittle due to inherent workload unpredictability
(especially, the initial application placement time) and are

1

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 1916

usually shunned by public cloud providers. In contrast, Shad-
owBox’s redundancy-driven overbooking has predictable worst
case behavior (i.e., resource failure probabilities) that can be
used for the cloud providers to guarantee a certain service
level agreement (SLA) for their customers.

Dealing with the redundancy with shared resources has
also been tackled in shared-backup path protection in optical
networks, such as in [7] and [8]. However, the nature of the
hierarchical cloud structure leads to the complex dependencies
between host failures that make the problem more challenging.

Finally, while ShadowBox is applicable to a traditional
cloud infrastructure having a small number of large sites or
even within a single cloud site, it becomes an especially
powerful way to achieve DR in a network distributed cloud,
in which the cloud provider has hundreds of small (edge)
sites. We evaluate ShadowBox on a distributed cloud topology
inspired by a Tier-1 network provider’s cloud, and show that it
is able to eliminate more than 2.5 times of the wasted standby
resources, compared to the state-of-the-art approaches, while
preserving the applications’ resource entitlement requirements.

This paper makes the following contributions:
• We propose the core concept of redundancy-driven over-

booking in the cloud environment, and introduce Shadow-
Box, an architecture enabling such overbooking (Section
II).

• We propose placement rules (Section IV-A) that maxi-
mize the cloud resource utilization, while minimizing the
impact on applications’ entitlements.

• We develop optimization algorithms (Section IV-B and
IV-C) to perform redundancy-aware standby VM place-
ment and activation across multiple cloud datacenters in
a hierarchical infrastructure.

• We implement ShadowBox and integrate with OpenStack
(Section V) to show its effectiveness.

• We evaluate ShadowBox on a realistic cloud topology and
show a dramatic decrease of resource wastage (Section
VI).

II. SYSTEM DESIGN

ShadowBox is designed to provide Infrastructure-as-a-
Service (IaaS) in multi-tenancy environments. As shown in
Fig. 1, we consider a common architecture which is broadly
applicable for any cloud management systems. Specifically,
ShadowBox puts application placement requests from tenants
to the request queue and schedules them in the cloud, based
on the provisioning policy specified in each request while
monitoring the cloud resource status such as server, rack and
datacenter failures.

However, to allow the cloud provider to overbook standby
VMs on behalf of its users while assuring the expected
availability for active-standby applications, we need to extend
the placement request API. Fig. 1 highlights the API that
can be expressed by cloud tenants. We simplify the API to
make it easier to understand, while it is sufficient for the
main problem tackled in this paper. For the redundancy-aware
placement, in addition to the number of standbys for the

ShadowBox

Provisioning	policy

Resource	status

OpenStack	Cloud

App App App App

Failures,
Avail.	Resource

VM	Placement
Scheduling

Front	End

Request	Queue

active_VM:

num_of_standbys:	2

diversity_level:	datacenter

EAR_threshold:	0.9995		

…

va vs

Placement	Request	API

vs

Tenant

Fig. 1: ShadowBox architecture.

active VM, we emphasize that the API includes the expected
availability assurance for the application, which is converted
to the entitlement assurance rate (EAR) threshold. The EAR
threshold is about how much the cloud tenant expect the
availability and entitlement assurance for the given application
when standbys are overbooked, and the formal definition
is described in Section III-B. In our private cloud setup,
tenants can estimate the application’s availability based on
the number of standbys and diversity. This is similar to the
Amazon EC2 cloud, where tenants place their VMs in different
availability zones (or datacenters) with the expectation of
certain guaranteed availability [9]. However, this is typically
done without the standby information and therefore, with no-
overbooking. ShadowBox uses overbooking and checks how
much it is guaranteed for tenants to obtain full resources upon
resource failures to determine where to place or which standby
VM to activate (e.g., a standby VM can be fully activated when
its active VM fails). Moreover, ShadowBox allows tenants
to specify even finer-grained diversity levels. For example,
placing VMs on the same server or rack will reduce network
latency but it hurts its availability upon failures.

III. PROBLEM STATEMENT

We assume that the placement of a cloud application is
requested with one active and n standby VMs (i.e., 1+n
active-standbys), and total M applications are requested to
the cloud. Formally, the set of all VMs of an application Ai,
(i ∈ 1, ...,M) is defined as Ai = {va, vs1, vs2, ..., vsn}, where
va is the active VM and vsj is the jth standby. All VMs of the
application are placed in physical hosts, which are configured
in a hierarchical cloud infrastructure of servers, racks, and
datacenters. In the hierarchical cloud infrastructure illustrated
in Fig. 2, a failure cascades down from the top-level. That
is, when a datacenter (or a rack) fails, all the servers in that
datacenter (or rack) also fail. In this structure, each server
is connected to other servers through the top of rack switch
(ToR) in the same datacenter or through core switches across
datacenters.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1917

Core

ToRToR

!"

Server

Rack

Active VM

Standby VM

Network link

Application1

Client

Datacenter

!#
!"

!#

!"

!#

!"

!#

Application3
Application2

Fig. 2: Example of three 1+1 application placements.

Fig. 2 depicts the cloud infrastructure with four datacenters,
where three 1+1 applications are placed. All three standby
VMs are co-placed in a server, while their active VMs are
placed in three different datacenters. In this example, we
assume that each server has the capacity of 2 CPU slots1 and
each slot can be used for either one active VM or 2 standby
VMs. Each client communicates with the active VM (va) of
the application or the standby (vsj) if its va is not available.

A. Resource utilization

To utilize given cloud resources, our goal is to place as many
applications as possible. To this end, we overbook m standby
VMs of m different applications into one slot with a certain
overbooking rate R.2 Note that each active va is assumed to
use the whole slot (i.e., no overbooking).

In the case of Fig. 2, R is set to 2, so up to 2 standby VMs
can be placed in a slot and up to 4 standby VMs can be placed
in a server. The number of slots used to place all 3 active and
3 standby VMs is 5, while without overbooking 6 slots would
be required. To quantify this, the resource utilization is defined
as follows.

Definition 1. Given the M ′ number of standby VMs of all
applications placed in the cloud, the total number of slots
used for all such VMs is measured as S. Then, the resource
utilization is defined as M ′

S (i.e., the number of VMs allocated
per slot).

In fact, the total number of standby VMs, which can be
overbooked in a server, is restricted by failure probabilities of
the cloud infrastructure (i.e., servers, racks, and datacenters).
Specifically, when the servers hosting the original active VMs
fail simultaneously, we need a certain number of standby VMs
to be able to work as active VMs. Those newly activated
VMs, however, must not be overbooked, since any active VM
needs one whole slot (i.e., entitlement). We define the available
number of slots for standby activations in a server s as Bs in
the rest of this paper.

In the example shown in Fig. 2, we set Bs to 1, indicating
that only one standby VM vs can be fully activated at a time,

1While CPU overbooking is most common, other resources such as memory
and storage are also candidates for overbooking.

2Other terms such as oversubscription and overcommit which have been
used in other literature have the same meaning.

in case of the corresponding active VM va failure. Thus, up
to 3 standby VMs can be placed in a server.

B. Application EAR

An application Ai is not available if the server of an active
VM (va) fails along with all servers running its standby VMs.
Moreover, it is not fully available if the server of an active VM
va fails and not one of the standby VMs can be assured for
its resource entitlement due to the overbooking. For instance,
Fig. 2 shows the example in which only one standby VM can
be fully activated at a time (Bs is 1) and 3 standby VMs are
co-placed in a server. In this case, if two servers hosting two
active VMs fail simultaneously, not both standby VMs can be
activated. In other words, not both can be assured for their
entitlement. To quantify this, the entitlement assurance rate
(EAR) of an application is defined as follows, and its formal
equation will be described in Section IV-A3.

Definition 2. EAR of application Ai is the probability that its
active VM (va) or one of its standby VMs (vsj) is assured for
the entitlement for each time period upon failures.

We focus on improving EAR when we overbook the standby
VMs. Intuitively, it is reasonable to avoid possible contention
on a slot between applications when Bs VMs fail (or, Bs

standby VMs activate) simultaneously. Basically, our approach
is to ensure independent failures between applications by re-
ducing the placement overlap among standby VMs of different
applications.

C. Placement problem

Our approach aims to maximize the resource utilization
(Def. 1) in the hierarchical cloud infrastructure, while meeting
the EAR (Def. 2) threshold Ti of each application Ai. Impor-
tantly, EAR is affected by the number of available slots per
server to activate standby VMs (i.e., Bs), the placement over-
lap, and the diversity in the hierarchical cloud infrastructure.
This will be precisely analyzed in the following section.

We assume that the standby VM vsj will run active only
until the original active VM va is repaired. We also assume
that there is some upper bound on the number of standby VMs
overbooked on a server, since they consume some amount of
CPU cycles and bandwidth to sync the states with their active
VMs. This will be further discussed in Section V.

IV. SHADOWBOX APPROACH

In this section, we analyze ShowdowBox’s placement rules
and their implications on the EAR and resource utilization.
Then, we describe (a) a VM placement algorithm that takes
into account different applications’ EARs, and (b) an algo-
rithm that decides which standby VM(s) to activate upon an
application’s active VM failure.

A. Placement rules

For the analysis in this section, we first define the failure
probability of a cloud component as px = MTTR

MTBFx+MTTR , where
MTBFx is the mean time between failure for x level in the

Core

ToRToR ToR

!"

!"

!"

ToR ToR

Core Core

#$

#%

#&

Server

Rack

Active VM

Standby VM

Datacenter

!"

!'

!' !'

!' !'

!'

!'

Datacenter1 Datacenter2 Datacenter3

Fig. 3: Examples of different placement diversities (datacenter,
rack, and server levels).

cloud hierarchy (i.e., x is a datacenter, rack, or server) and
MTTR is the mean time to repair.

1) Placement diversity: Given the diversity requirement in
the ShadowBox API (Section II), our approach places VMs
of the same application into different cloud components to
increase the chance of at least one VM of the application
still running upon each failure. Fig. 3 illustrates three different
diversity placements of 1+2 (i.e., 1 active and 2 standbys)
applications. All VMs of application A1 are placed in different
servers in a rack for the server level diversity. Similarly, All
VMs of A2 are placed in different racks in Datacenter1, and
all VMs of A3 are in different datacenters for the rack and
datacenter level diversities, respectively.

While we can assume that failures are independent in
the same level of the cloud hierarchy, servers’ failures are
dependent across levels. For example, if Datacenter1 fails, all
racks and servers in the datacenter are not accessible. In Fig.
3, A1 and A2 are considered not available if Datacenter1 fails.
Meanwhile, A3 is still available, since one of its standby VMs
can be activated in either Datacenter2 or Datacenter3.

Considering this dependency, we obtain the probability that
each application cannot be assured for the entitlement (i.e., 1−
EAR) based on each cloud infrastructure’s failure probability.
For instance, the probability of a single VM failure in the cloud
hierarchy is pd+p′d(pr+p′rps), where pd, pr, and ps are failure
probabilities of datacenter, rack, and server, respectively, and
p′d = 1− pd and p′r = 1− pr. This implies that a single VM
failure happens if either the host datacenter, the host rack, or
the host server fails.

By extending this, now we calculate the probabilities of an
application not being available for the datacenter (γd), rack
(γr), and server (γs) level diversity, respectively.

The datacenter diversity rule for the (1+n) application
will place 1 VM in each datacenter (1 active VM on 1
datacenter and n standby VMs in n datacenters). Therefore
γd corresponds to the cases of failure of all datacenters, all
racks, or all servers, where each VM is hosted.

γd = (pd + p′d(pr + p′rps))
1+n (1)

With the rack level diversity, γr is either (a) the datacenter
fails or (b) 1+n racks (or 1+n servers) hosting all VMs fail.

γr = pd + p′d(pr + p′rps)
1+n (2)

!"

!"

!"

!"

!"

!"

!"

!"

Server

Active VM

Standby VM

!"

!#

!# !#

!# !#

!#
!#

!#
!#

!#
!#

!#
!#

!#

!#

Server1 Server2

!#

Fig. 4: Examples of 1+1 applications. Two servers in the
middle has different number of slots for standby activations
(B1 = 1 for Server1 and B2 = 2 for Server2).

With the server level diversity, γs is either (a) the datacenter
fails or (b) the rack fails, or (c) all 1+n servers fail.

γs = pd + p′d(pr + p′rp
1+n
s) (3)

2) Standby overbooking: Next, we analyze the impact of
overbooking on the resource utilization and EAR.

Assume the server s has total C cores and the overbooking
rate per core is R. With Bs and Bmax

s , where Bs is the number
of standby activations and Bmax

s is the maximum number of
overbooked VMs, the following should satisfy

Bs +
Bmax

s −Bs

R
≤ C. (4)

Therefore,

Bmax
s ≤ CR−Bs(R− 1). (5)

Consequently, the resource utilization (based on Bmax
s) linearly

decreases as allowing more standby VMs to be activated (Bs)
(while it increases the EAR).

Fig. 4 illustrates this tradeoff with the two servers hosting all
standby VMs for 1+1 applications. Assume R is set to 4, and
C is 3. Based on (5), Server1 can host up to 9 standby VMs
with B1 = 1. In this case, Server1 can assure the entitlement
(i.e., a whole slot) of only one standby VM (vsj) upon active
VM (va) failure. On the other hand, Server2 can host only up
to 6 standby VMs with B2 = 2.

We can consider two possible failure cases for the 1+1
application Ai in Fig. 4. The first case is that the server hosting
va of Ai fails and the server hosting its vs (e.g., Server1) also
fails. The second case is that when the server hosting va of
Ai along with the host of va of another 1+1 application fails,
where the standby VMs of both applications are hosted in
Server1. Then more than two standby VMs in Server1 will
contend to be activated due to B1 = 1.

The probability of the first case depends on the placement
diversity of Ai and γd in (1), γr in (2), and γs in (3). If we
assume application Ai has ni number of VMs, with no-overlap
assumption, the contention probability in the second case for
Ai is approximately

γ = p′dp
′
rp
′
s q

ni
i

(B−1
Bs

)∑
l=1

∏
Ay∈Sl

qny
y

∏
Ay /∈Sl

(1− qny
y). (6)

The term p′dp
′
rp
′
s is the probability that the server hosting the

standby VM (vs) of Ai works, and qni
i is the probability that

ToR

Core

ToR

Core

ToR

Core

ToR

Core

ToR

Core

ToR

Core

!"

!"

!"

#$

#%

#&

#'

Server

Rack

Active VM

Standby VM

Datacenter

!"

!(

!(

!(

!(

!(

!(

!(

!(

Datacenter1 Datacenter6Datacenter2 Datacenter3 Datacenter4 Datacenter5

!(!"

Fig. 5: Example of placement overlaps among four 1+2
applications across datacenters.

servers hosting the remaining ni VMs of Ai fail, knowing that
the host server of (vs) is working. Here, the probability qi
depends on the diversity level of Ai. That is, if the diversity
is server level, ni servers hosting ni VMs of Ai are in the
same datacenter and the same rack with vs, which is not
failed with probability p′dp

′
r. Thus, qi is ps. Similarly, in the

rack level diversity, qi is pr + p′rps, and in the datacenter
level, is pd + p′d(pr + p′rps). To find the probability that Bs

out of other B − 1 applications need their standby VMs, we
need to consider all

(
B−1
Bs

)
cases. In each case l, Sl is the set

of applications that need their VM. The lower bound on the
probability that all applications in Sl need their standby VM
is
∏

Ay∈Sl
q
ny
y . Similarly, the lower bound for the probability

that the remaining applications do not need their VMs is∏
Ay /∈Sl

(1−qny
y). Note that we could consider that more than

Bs standby VMs contend for Bs slots caused by more VM
failures; however, such probabilities are negligible compared
to (6).

3) Placement overlap: Finally, we analyze the impact of
the placement overlap on the application EAR. First, the
placement overlap delta for two application Ai and Aj , δi,j ,
is the number of VMs of application Ai, which do not share
a host server with any VMs of application Aj . The placement
overlap delta for an application Ai is defined as the minimum
of the placement overlap delta of application Ai and all other
applications Aj , j 6= i. In other words, ∆i = min δi,j ,∀j 6= i.

In Fig. 5, we illustrate how four 1+2 applications’ (A1 to
A4) placements are overlapped with each other in 6 datacenters
with the datacenter level diversity. As it can be seen in this
figure, δ1,2 = δ1,3 = 2, and δ1,4 = 0, so ∆1 = 0.

Let’s assume Bs = 1 (i.e., only 1 standby VM can be
activated at a time) for the server in Datacenter1 in Fig. 5. The
failure on entitlement assurance of application A1’s standby
VM caused by another application activating its standby VMs
depends on ∆1. Suppose that the server in the Datacenter1 is
working, but 3 servers in the Datacenter2 to Datacenter4 are
failed. The standby VM of A1 in Datacenter1 will contend
with the standby VM of A4 to be activated, since δ1,4 = 0.
On the other hand, in this situation, the standby VM of A1

does not contend with the standby VM of A2 in this server,
since δ1,2 = 2 and another standby VM of A2 can be activated
in Datacenter5.

In our proposed placement algorithm, when placing appli-
cation A1 in each server s, the placement overlap delta of

Algorithm 1 Redundancy-aware VM placement.

1: A; # final placements of all applications
2: ∆∗ ← ø; # ∆ meets EAR threshold T
3: B∗ ← ø; # no. slots meets EAR threshold T
4: (∆∗, B∗)← DeltaAndSlots(requirements)
5: for each vi ∈ V # for each VM of given application
6: for each sj ∈ S # for each server
7: if Diversity(A, vi, sj) not meet or
8: CurrDelta(A, sj) < ∆∗ or
9: Bsj < B∗ or # available slots of sj less than B∗

10: Cap(Bsj , R) > C then # sj has no capacity
11: Remove(sj , S);
12: if S = ø then break; # no server found
13: S∗ ← Sort(S); # sort servers by ∆ and Bs

14: A← A ∪ (S∗[0]← vi); # get the largest ∆ and Bs

application A1 and all other already placed applications in this
server (c(s)) will be considered. Therefore, for application Ai

we can define parameter ∆(i)(s) for each server s based on

∆(i)(s) = min
j∈c(s)

δi,j . (7)

Our proposed placement algorithm can consider ∆(i)(s) as a
metric to rank different candidate servers, and it only considers
the servers with ∆(i)(s) that meet a threshold. Obviously,
when there is overlap in placement of standby VMs, the
probability of contention of application Ai, (γ in (6), will
increase.

B. VM placement

Although many known algorithms for the optimal VM
placement have been proposed including [10] [11] [12] [13],
our VM placement algorithm additionally deals with the 1+n
application’s entitlement assurance rate (EAR) as well as
the resource utilization in a hierarchical cloud infrastructure.
Specifically, our algorithm aims to overbook as many standby
VMs in the hosting servers as possible, while taking into
account its destructive effect on the application EAR.

To ensure the EAR threshold requirement, our algorithm
attempts to keep the high values of both the number of
available slots for standby activations (Bs) and the placement
overlap delta (∆) to avoid simultaneous activations of co-
placed standby VMs. However, once many such 1+n appli-
cations are placed in the multi-tenancy cloud, reducing Bs

and ∆ are inevitable. Consequently, our algorithm places
VMs of each arrived application (i.e., on a first come, first
served basis), while reducing their placement overlap with
already placed VMs of the other applications as much as
possible, and choosing a server, which has the largest capacity
among the candidate servers. Bs and ∆ decrease as more
applications are placed in the cloud infrastructure, until there
are no more servers left to guarantee the EAR threshold of a
new application.

Algorithm 1 summarizes our greedy VM placement pro-
cedure. In line 4, it first computes the minimum required
placement delta (∆∗) and available slots for activating each
standby VM (B∗) to meet the given EAR threshold using
equations (1), (2), (3), and (6). For each standby VM, the
algorithm filters out servers that do not meet constraints in

Algorithm 2 Standby VM selection for activation.

1: Af ← ø; # a set of failed apps due to host failures
2: for each si ∈ Sf # for each failed server
3: if si includes vas then # if si has active VMs
4: Af ← Af∪ applications of vas
5: S ← Avail(Af); # get servers hosting standbys of Af

6: S ← Sort(S); # sort servers by available slots
7: Af ← Sort(Af); # sort failed apps by EAR threshold
8: for each Ai ∈ Af # for each failed app
9: for each sj ∈ S # for each server hosting standbys

10: if sj has any vs of Ai then # if sj has a standby of Ai

11: ActivateStandby(vs, sj);
12: DeductAvailableSlot(sj);
13: break;
14: if

∑
sj∈S Bsj = 0 then break;

lines 7–10. It checks if the VM placement into sj violates
the diversity requirement (see Section IV-A1) with the prior
placements in A (i.e., Diversity in line 7). Then, it checks
if choosing sj for the current vi of an application does not
meet the minimum required placement delta ∆∗ in line 8. It
also checks if the available slots for activating standby VMs
of sj is more than or equal to the minimum required slots B∗

in line 9. Finally, it checks the capacity of sj (Cap in line 10)
as defined in (4). Note that this algorithm does not include
the placement of active VMs, which is similar to the standby
VM placement except it does not check the available slots
for activation (i.e., line 9). If it cannot find out any candidate
server, it exits. Otherwise, it chooses a server that has the
largest ∆ and Bs from the candidate list (lines 13–14).

The algorithm can also include other constraints such as
network latency and bandwidth, if those requirements are
given. For the network latency, the algorithm checks the
latency requirement considering the latency between datacen-
ters. We assume the latency will be met within the datacenters.
ShadowBox also keeps monitoring the available bandwidths of
each link and the minimum of all links between two nodes to
check with the bandwidth requirements.

Although we use a greedy algorithm, the experiment re-
sults show that, compared to the other alternative approaches
(Section VI), our proposed algorithm improves the resource
utilization significantly, while keeping EAR.

C. Standby selection for activation

When a cloud component fails, many 1+n applications
may be affected. For example, a datacenter failure triggers
the situation that all racks and servers in the datacenter are
inaccessible, making all active VMs hosted in those servers not
available. Once ShadowBox captures such failed applications
at runtime, it finds the servers of corresponding standby VMs
of those failed applications. It activates them as active VMs
and continue running those standby VMs until the repair is
done. In fact, selecting standby VMs for activation may not
be trivial, if many applications are affected from the failures
and many standby VMs are overbooked.

Algorithm 2 presents a heuristic standby selection proce-
dure. ShadowBox first captures all the affected applications
(lines 1–4) and available servers which are hosting standby

VMs of affected applications in line 5. Then, it sorts those
servers by the number of available slots for standby activations
(Bs) in descending order in line 6. It also sorts the affected
applications by EAR threshold in descending order in line 7
(i.e., dealing with the most critical application first). For each
affected application, it attempts to get a server that hosts any
one of standby VM of the application in lines 8–10. If a server
is found, the algorithm activates the standby VM in the server
in line 11, and decrease the number of available slots of the
server in line 12. ShadowBox stops its procedure once there
is no available slots left in servers in line 14.

ShadowBox can validate if all failed applications can be
assured for their entitlements by comparing the total number
of available slots for standby activations of all servers, where
standby VMs of failed applications are hosted, to the number
of failed applications (i.e.,

∑
sj∈S Bsj ≥ |Af |, where |Af | is

the number of failed applications, and S is the set of servers
hosting standby VMs).

V. IMPLEMENTATION

We have implemented ShadowBox as a redundancy-aware
resource scheduler on top of OpenStack3, which is a popular
open source cloud platform. We have used the OpenStack
Heat template4 as the placement request format, and added
key/value pairs to include additional information (i.e., the
number of standbys, EAR threshold, diversity as shown in Fig.
1). The OpenStack platform has been deployed in each data-
center to orchestrate datacenter resources. It also periodically
reports resource status to ShadowBox. The resource failures in
each datacenter are also monitored and reported using Nagios5.

To control the rack and server level diversities within a
datacenter, we have added our own scheduling filter into the
OpenStack Nova filter scheduler6. Our filter can select a server
among all candidate servers based on the diversity require-
ments. We have also implemented a server agent module that
runs on each server to control the overbooking per core using
cgroup mechanism7 in Linux. Basically, the agent controls
the overbooking rate per core by pinning a given vCPU to
a CPU core. For example, if the overbooking rate R is 4, it
can allocate (pin) 4 vCPUs per core.

To determine the maximum number of standby VMs per
server that consistently communicate with its active VM
for state update, we have performed offline measurements
using the virtual proxy server backed with a small database,
which is one of the most CPU-intensive stateful applications
in our private cloud. We have found that up to 1 Mbps
bandwidth and R = 4 are enough for each standby VM.
Then, we conservatively set the upper bound of overbooking
standby VMs to 30 for ShadowBox to use up to 8 cores
per server for the redundancy-aware placements. The upper
bound can dynamically be changed when we consider various

3https://www.openstack.org
4https://docs.openstack.org/developer/heat/template guide/hot spec.html
5https://www.nagios.com
6https://docs.openstack.org/developer/nova/filter scheduler.html
7https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1921

applications that have different performance characteristics.
We are planning to employ other applications as our on-going
work, but we consider the CPU-intensive application for the
simplicity in this paper.

VI. EVALUATION

For the evaluation, we experiment ShadowBox in our private
distributed cloud. We also use simulations to accommodate
failure injections for the long period (e.g., 20 years).

A. Experimental setup

We use our hierarchical cloud infrastructure consisting of
10 datacenters in the edge for the evaluation. There are
three different datacenter types that have different resource
capacities as shown in Table I.

TABLE I: The hierarchical cloud infrastructure.

datacenter type large medium small
number of datacenters 1 6 63
number of racks per datacenter 30 8 4
number of servers per rack 8 8 8

All links between datacenters have 40 Gbps bandwidth,
while all internal bandwidths (i.e., between top-of-rack (ToR)
and core switch) in each datacenter are set to 100 Gbps. Each
server has 8 CPU cores, 32 GB memory and 2 TB disk. Unless
mentioned otherwise, the default overbooking rate per core is
set to 4 (i.e., up to 4 single vCPU VMs can share a core).

B. Results

We show the results with two aspects, the resource uti-
lization and the EARs in two different failure scenarios
(i.e., Optimistic and Rampage). The Optimistic scenario sets
MTTR and MTBFs based on hardware documentations used
in our private cloud, while the Rampage scenario sets these
values more realistically by considering software crashes. And
two different threshold types (i.e., Stingy and Generous).
Generous threshold has less EAR than Stingy for higher
utilization. We also compare ShadowBox with two alterna-
tive approaches (i.e., No-Overbook and Overbook-Blindly).
No-Overbook approach will not overbook standby VMs on
servers, but will place VMs by following the diversity require-
ments. On the other hand, Overbook-Blindly approach will
overbook standby VMs but will not consider placement delta
(∆) nor the number of standby activations upon failure (Bs).

1) Resource utilization: Fig. 6 shows the resource utiliza-
tion (as defined in Def. 1) of ShadowBox and Overbook-
Blindly is more than two times better than No-Overbook
approach. Obviously, the resource utilization of No-Overbook
is 1 because it does not overbook standby VMs, and each
standby VM consumes a whole core. This experiment also
shows the impact of the placement delta ∆ on the resource
utilization. The resource utilization of the Overbook-Blindly
approach is higher than ShadowBox since it overbooks as long
as it finds available cores while ShadowBox should leave at
least 1 core per server (∆) available for possible failures. In the

0

0.5

1

1.5

2

2.5

3

3.5

ShadowBox
(Stingy)

ShadowBox
(Generous)

No-overbook Overbook
Blindly

Re
so
ur
ce
	ut

iliz
ati

on

Fig. 6: Resource utilization comparison between ShadowBox
and two different alternative approaches.

0
0.5
1

1.5
2

2.5
3

3.5

2:1 4:1 8:1 16:1

Re
so
ur
ce
	ut

iliz
ati

on

Overbooking	rate	per	core

Fig. 7: Resource utilization with different overbooking rates
per core.

later experiments, we show that this Overbook-Blindly’s high
resource utilization comes at the cost of EAR degradation.

To see the impact of the overbooking rate per core, we
measure the resource utilization by increasing the overbooking
rate. Intuitively, we expect the resource utilization increases
as a core has more capacity for overbooking. Fig. 7 shows
the result. We measure the resource utilization of ShadowBox
with Stingy threshold. As expected, the resource utilization
increases when doubling the overbooking rate. Interestingly, it
does not increase dramatically, and even with 16:1, it reaches
only around 3. This is mainly because ShadowBox carefully
and conservatively manages the placement delta ∆ to keep
meeting the EAR thresholds. It tries to avoid the overlap as
much as possible, and once it starts to overlap applications, it
checks the thresholds by estimating the failure probability as
described in Section IV-A3.

2) Application EARs: We measure the application EARs
using the stochastic failure simulations as failures are not
frequent enough over a short period of time, and it would be
difficult to collect a statistically significant number of failures
in such a cloud infrastructure.

Table II shows MTTR and MTBFs for the two failure
scenarios (i.e., Optimistic and Rampage), where MTBFd

is the datacenter MTBF, MTBFr is the rack MTBF, and
MTBFs is the server MTBF.

TABLE II: Two failure scenarios (hours).

MTTR MTBFd MTBFr MTBFs

Optimistic 54 130,000 80,000 30,000
Rampage 54 26,000 16,000 6,000

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1922

TABLE III: EAR thresholds under two failure scenarios with the expected availabilities

Expected Availability Generous EAR Threshold Stingy EAR Threshold
Redundancy & Diversity Optimistic Rampage Optimistic Rampage Optimistic Rampage

1+3 Server 0.998 0.994 0.995 0.985 0.997 0.990
1+4 Server 0.999 0.995 0.996 0.986 0.998 0.992
1+2 Rack 0.9996 0.998 0.999 0.990 0.9995 0.996
1+3 Rack 0.9999 0.999 0.9995 0.995 0.9996 0.998
1+1 Datacenter (DC) 0.99999 0.9998 0.99995 0.999 0.99997 0.9996
1+2 Datacenter (DC) 0.9999999 0.999997 0.9999995 0.99999 0.9999997 0.999995

0.997

0.998

0.999

1
ShadowBox No-Overbook Overbook-Blindly

1+3
Server

1+4
Server

1+2
Rack

1+3
Rack

1+1
Datacenter

1+2
Datacenter

Request	types

EA
R

Fig. 8: Application EAR comparison between ShadowBox and
two alternative approaches in the Optimistic failure scenario.

0.997

0.998

0.999

1
ShadowBox No-Overbook Overbook-Blindly

1+3
Server

1+4
Server

1+2
Rack

1+3
Rack

1+1
Datacenter

1+2
Datacenter

Request	types

EA
R

Fig. 9: Application EAR comparison between ShadowBox and
two alternative approaches in Rampage failure scenario.

Fig. 8 shows the comparison results in Optimistic failure
scenario. Overall, the differences among ShadowBox and the
other two approaches are relatively small (except Overbook-
Blindly). However, we can observe some important facts from
the results. First, ShadowBox achieves competitive EAR with
No-Overbook, even though ShadowBox overbooks VMs. This
indicates the importance of choosing ∆ in VM placement. By
increasing ∆, ShadowBox increases the failure independency
among applications.

As expected, the No-Overbook approach achieves the best
EAR but with a cost of resource utilization. We can see
ShadowBox result is close to No-Overbook and even closer
in the higher diversity levels. This means ShadowBox can
achieve the high EAR with better resource utilization.

In Rampage failure scenario in Fig. 9, the trend is same
with Optimistic, but the difference between the approaches is
clearly seen, especially, in lower diversity levels. ShadowBox
still shows competitive EARs with No-Overbook while the gap
is larger than in Optimistic failure scenario. and obviously
better than Overbook-Blindly approach. Especially, in the
higher diversity level, it is almost same with the No-Overbook
approach. The gap in 1+3 server level diversity is the largest

1+3
Server

1+4
Server

1+2
Rack

1+3
Rack

1+1
Datacenter

1+2
Datacenter

Request	types

EA
R

0.997

0.998

0.999

1
Stingy
Generous

Fig. 10: Application EARs of two different EAR thresholds
in Rampage failure scenario.

between ShadowBox and No-Overbook approach. However,
the average EARs ShadowBox achieves are more than the
expected availability (i.e., 0.994 obtained by (3)) as well as
the EAR threshold (i.e., 0.990), thanks to the conservative
placement approach of ShadowBox. Note that Overbook-
Blindly even does not meet the expected availabilities because
of many simultaneous resource failures making many applica-
tions being not available.

Table III shows the expected availabilities that are computed
with (1) (2), and (3). ShadowBox attempts to meet EAR
thresholds while placing VMs. For example, for the given
1+3 application with the server level diversity, its expected
availability is 0.998 in Optimistic failure scenario (obtained
by (3)). By overbooking 3 standby VMs on some servers, it
also expects an additional EAR degradation up to 0.003 in
the Generous threshold case. Therefore, its adjusted expected
EAR is 0.995 (0.998 - 0.003).

Fig. 10 shows the difference between two threshold types
(i.e., Stingy and Generous) in the Rampage failure scenario.
This indicates the same trends discussed in the above exper-
iments. The average EARs ShadowBox achieves increases as
the diversity level and the number of standby VMs increase for
both Stingy and Generous thresholds. The average EARs meet
even the expected availabilities in lower diversity levels (i.e.,
server and rack levels), but does not in the datacenter diversity
cases. However, when considering the EAR thresholds, Shad-
owBox can meet the adjusted EARs. Stingy threshold leads
to the higher EAR results because ShadowBox constrains the
overbooking more in this case than in Generous case by more
avoiding the placement overlap and leaving more number of
slots to be used for activating standby VMs.

VII. RELATED WORK

High Availability (HA) has been considered as one of
challenging obstacles to the growth of cloud computing [14].

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1923

Redundancy and checkpointing. One of well-known
mechanisms is the redundancy with either active-active or
active-standby replication, which ShadowBox also tackles in
this paper. Remus [15] offers a method to asynchronously
propagate changed state to backup hosts. Another well-known
mechanism is the checkpointing that is a technique to add
fault tolerance into systems basically by saving snapshot of
system state so restarting from that point in case of failure [16]
[17] [18] [19]. ShadowBox can employ those mechanisms to
improve the state updates between active and standby VMs.

Availability and performance tradeoff. Jung et al. [10]
has proposed an algorithm to address the tradeoff between the
application performance, especially network latency between
replicas, and the application availability. Zhou et al. [20]
proposes a VM placement optimization by placing standby
VMs close to active VMs to reduce network bandwidth
consumption, while ShadowBox aims at maximizing resource
utilization while ensuring the high entitlement assurance and
availability. Sharma et al. [21] combines energy efficiency and
reliability for efficient resource provisioning and studies the
tradeoff between them.

VIII. CONCLUSION

Cloud applications are often suffer from unpredictable cloud
resource failures. The redundancy with standby VMs has been
popularly used to address the high availability problem, but
it could decrease the cloud resource utilization if it is not
properly used. In this paper, we propose ShadowBox, which
runs by the cloud provider and allows cloud tenants to specify
their needs for the availability and the entitlement assurance
of their applications. ShadowBox then overbooks multiple
standby VMs on servers to improve the cloud resource utiliza-
tion, while avoiding potential simultaneous activations of those
standby VMs upon resource failures, to satisfy cloud tenants’
availability and entitlement needs on their applications. We
have addressed the tradeoff between the overbooking and
entitlement assurance rate (EAR) with the algorithms that
control the number of VMs of different applications to be co-
placed in servers. Evaluations in our private cloud show that it
significantly improve the resource utilization with a minimal
loss of EAR.

IX. ACKNOWLEDGEMENTS

This work was partially supported by the NSF under Grant
CNS-1525435.

REFERENCES

[1] A. Avizienis, “Design of fault-tolerant computers,” in Proc. of Fall Joint
Computer Conference, 1967, pp. 733–743.

[2] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proc. of USENIX Opearting Systems
Design & Implementation, 2004.

[3] “Mongodb chained replication,” https://docs.mongodb.com/v3.2/tutorial/
manage-chained-replication/.

[4] K. V. Rashimi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: a study on the Facebook
warehouse cluster,” in Proc. of USENIX Hot Storage, 2013.

[5] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is
change: incorporating time-varying network reservations in datacenters,”
in Proc. of ACM SIGCOMM, 2012, pp. 199–210.

[6] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri, and
R. Bianchini, “History-based harvesting of spare cycles and storage in
large-scale datacenters,” in Proc. of USENIX Operating Systems Design
and Implementation, 2016, pp. 755–770.

[7] D. A. Mello, J. U. Pelegrini, R. P. Ribeiro, and D. A. S. andH. Waldman,
“Dynamic provisioning of shared-backup path protected connections
with guaranteed availability requirements,” in Broadband Networks,
2005, pp. 1320–1327.

[8] L. Zhou, M. Held, and U. Sennhauser, “Connection availability analysis
of shared backup path-protected mesh networks,” Journal of Lightwave
Technology, vol. 25, no. 5, pp. 1111–1119, 2007.

[9] “Regions and availability zones,” http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-regions-availability-zones.html.

[10] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Performance
and availability aware regeneration for cloud based multitier applica-
tions,” in Proc. of IEEE Dependable Systems and Networks, 2010, pp.
497–506.

[11] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on IaaS
clouds with structural constraint-aware virtual machine placement,” in
Proc. of IEEE Service Computing, 2011, pp. 72–79.

[12] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and
D. H. Lorenz, “Guaranteeing high availability goals for virtual machine
placement,” in Proc. of IEEE International Conference on Distributed
Computing Systems, 2011.

[13] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable virtual
machine allocation,” in Proc. of IEEE INFOCOM, 2013, pp. 629–637.

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[15] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual ma-
chine replication,” in Proc. of USENIX Networked Systems Design and
Implementation, 2008, pp. 161–174.

[16] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subrama-
niam, “Providing reliability as an elastic service in cloud computing,”
in IEEE Communications, 2012, pp. 2912–2917.

[17] M. S. Bouguerra, A. Gainaru, L. B. Gomez, F. Cappello, S. Matsuoka,
and N. Maruyam, “Improving the computing efficiency of hpc systems
using a combination of proactive and preventive checkpointing,” in IEEE
Parallel and Distributed Processing, 2013, pp. 501–512.

[18] B. Nicolae and F. Cappello, “Blobcr: Efficient checkpoint-restart for
hpc applications on iaas clouds using virtual disk image snapshots,” in
Proc. of ACM High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 34:1–34:12.

[19] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello,
“Optimization of cloud task processing with checkpoint-restart mech-
anism,” in Proc. of ACM High Performance Computing, Networking,
Storage and Analysis, 2013, pp. 64:1–64:12.

[20] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Cheng, M. Lyu, and
R. Buyya, “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Transactions on Service Computing,
2016.

[21] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy
efficiency in cloud computing systems,” J. Netw. Comput. Appl., vol. 74,
pp. 66–85, 2016.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1924

