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ABSTRACT
We present the demonstration of a fully distributed scheduling
framework called CASTLE (Client-side Adaptive Scheduler That
minimizes Load and Energy) that jointly optimizes the spectral
efficiency of cellular networks and battery consumption of smart
devices. To do so, we focus on scenarios when many smart devices
compete for cellular resources in the same base station: spreading
out transmissions over time so that only a few devices transmit at
once and improves both spectral efficiency and battery consump-
tion. To this end, we devise two novel features in CASTLE. First, we
explicitly consider inter-cell interference for accurate cellular load
estimation in our machine learning algorithm.Second, we propose
a fully distributed scheduling algorithm that coordinates transmis-
sions between clients based on the locally estimated load level at
each client. Our formulation for minimizing battery consumption at
each device leads to an optimized back off-based algorithm that fits
practical environments. Our comprehensive experimental results
show that CASTLE's load estimation is up to 91 % accurate, and
that CASTLE achieves higher spectral efficiency with less battery
consumption, compared to existing centralized scheduling algo-
rithms as well as a distributed CSMA-like protocol. Furthermore,
we develop a light-weight SDK that can expedite the deployment
of CASTLE into smart devices and evaluate it in a commercial LTE
network.
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1 INTRODUCTION
We observe that the number of mobile devices is rapidly increasing
on daily basis, which in turn increasing the mobile data traffic ex-
ponentially. To cope up with such increase in the traffic the new
focus is to develop new low power wide area communication tech-
nologies. These kinds of devices are extensively used in Internet-
of-Things (IOT) application. IOT is new area that will make human
life much easier. Autonomous driving, smart cities/infrastructures
and connected healthcare are few of the IOT based systems. Hence
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in future traffic will increase and most of it will be from these smart
devices. Therefore these devices must build with long battery life,
low device cost and extended coverage [1]. But the present cellular
networks are ill equipped to handle the growing number of cellular
devices and their data demand. Huge number of simultaneously
active devices can lead to very low per device through-puts and
even short-term unfairness [6]. Also, devices can incur significant
battery consumption due to enlarged transmission times when the
cellular load is very high or congested [2].

Given these limitations, many devices would prefer to utilize the
network when the cellular load is low, and few other devices are ac-
tive. By doing so, they can significantly increase spectral efficiency,
and thus help the network cope with the increased amount of data
traffic. However, this requires client devices to estimate the cellular
load in real time with negligible energy expenditure, which presents
the most interesting research challenge. For instance, the cellular
load is impacted by the amount of traffic generated by other devices
in the network and changes dynamically over time [5], as well as
across geographical locations and environmental conditions [3].

Hence, we have developed the CASTLE, distributed framework
that optimizes the spectral efficiency of cellular network and bat-
tery consumption in cellular devices. CASTLE achieves this by
building light weight machine learning model which considers the
RSRQ (Reference Signal Received Quality) and SINR as features,
one of the important aspects in CASTLE is that it also considers
the inter cell interference which improves the machine learning
model prediction. This cell load information is locally coordinated
between the different UE's and the distributed algorithm uses this
for optimizing the spectral efficiency in network and reduces the
battery consumption in each cellular device. The algorithm is qual-
itatively like LoadSense's Peek-n-Sneak protocol [2], in which each
client performs a simple CSMA-like operation before obtaining a
scheduling opportunity from the BS based on the binary estimation
of cellular load. However, we take a theory-driven approach that
guarantees optimal performance. Further We have implemented
CASTLE as a light-weight software development kit (SDK) on the
Android platform that provides cellular load estimation as well as
a distributed scheduling service. To minimize the SDK's energy
expenditure, as is needed for smart applications, we exploit several
techniques including a lookup-based load inference using passive
UE's measurements. Note that our full paper can be found in [4].

2 CASTLE SDK
At each UE, the channel inference module of CASTLE maintains
a mapping table (Cell Load Lookup Table) that inputs the RSRP,
RSRQ, and SINR values and outputs the estimated load class. The
table consists of 45,198 entries where each entry is encoded with
2 bits to represent four classes of cell load. The total table size is
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Figure 1: CASTLE architecture.

about 89 KBytes which is reasonably small for today's smart devices.
We also implement CASTLE's Scheduler module. It estimates the
throughput using the RSRQ, RSRP, SINR and mapping table at every
time slot (i.e., 1 sec), and decides when the download starts. The
CASTLE SDK is available in [9], which includes the following APIs:

• castle_predict_class_short() - predict the class with instanta-
neous RSRQ, RSRP, SINR measurements.

• castle_predict_class_long() - return the class mostly picked
from the recent 10 consecutive measurements. In general, it
is more accurate than castle predict class short(), since it can
ignore a UE measurement error.

• castle_schedule() - schedule a download. It compares the
estimated throughput A(t) and the threshold A∗ to decide
when the download starts. If A(t) < A∗, it stays silent for
this time slot.

3 DESCRIPTION OF DEMONSTRATION
As shown in Figure 1, CASTLE SDK's expected throughput is esti-
mated by the Channel Inference module and fed into the Scheduler
module. The Channel Sensing module periodically obtains PHY-
layer information. To minimize the computation overhead, CASTLE
uses the Cell Load Lookup Table, which populates the cell load level
for each RSRP, RSRQ, CQI and SINR pair by using both analytical
models and machine learning for the inter-cell inference scenario.
This enables an efficient O(1) lookup. The Scheduler module then
decides the transmission schedule for the application traffic accord-
ing to the CASTLE algorithm.

We built an end-to-end LTE test bed to evaluate CASTLE, as
shown in Figure 2. The testbed consists of UEs, eNodeBs, EPC
(Evolved Packet Core) and application servers. For the eNodeBs, we
use two commercialized indoor LTE Band3 small cell products, Juni
JL620 [7], which are connected to GPS to correct frequency offsets.
We placed multiple UEs from various vendors and models inside a
shield box, so that the UE's can communicate with the eNodeBs via
a pair of antennas inside the box. The signal attenuator installed
between the antenna located in the box and eNodeBs outside pro-
vides appropriate signal strengths to the UE's and further allows us
to emulate a variety of RF situations, including interference from
neighbor cells. For EPC, we use the open source software from Nex-
tEPC [8]. The application servers gather cell-specific information
from both the UE's and eNodeB's.

For our demo, we choose 8 UE's inside a shield box with lookup
table installed in each of them. Each UE will download file from
FTP server. All the UE's will start sensing the channel and decide
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Figure 2: Our controllable end-to-end LTE network testbed.

whether to download the file from the server using the CASTLE
algorithm. We will see only those UE's will download the file which
has got the decision to download file instead of all the UE's trying
to download simultaneous. Figure 3 shows the individual UE's
download process with progress bar. The video clip is available
at https://youtu.be/oEq0jz9wY0s, which demonstrates the same
scenario from our in-lab LTE testbed and compares it with normal
download. We will show that CASTLE can jointly optimize the
spectral efficiency of cellular network and the battery consumption
of smart devices.

Figure 3: Snapshot of CASTLE running on a single UE.
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