
CASTLE over the Air: Distributed Scheduling
for Cellular Data Transmissions

Jihoon Lee
University of Colorado Boulder
jihoon.lee-1@colorado.edu

Jinsung Lee
University of Colorado Boulder

jinsung.lee@colorado.edu

Youngbin Im
University of Colorado Boulder
youngbin.im@colorado.edu

Sandesh Dhawaskar
Sathyanarayana

University of Colorado Boulder
sadh0344@colorado.edu

Parisa Rahimzadeh
University of Colorado Boulder
parisa.rahimzadeh@colorado.edu

Xiaoxi Zhang
Carnegie Mellon University
xiaoxiz2@andrew.cmu.edu

Max Hollingsworth
University of Colorado Boulder

max.hollingsworth@colorado.edu

Carlee Joe-Wong
Carnegie Mellon University
cjoewong@andrew.cmu.edu

Dirk Grunwald
University of Colorado Boulder
dirk.grunwald@colorado.edu

Sangtae Ha
University of Colorado Boulder

sangtae.ha@colorado.edu

ABSTRACT
This paper presents a fully distributed scheduling framework called
CASTLE (Client-side Adaptive Scheduler That minimizes Load and
Energy), which jointly optimizes the spectral efficiency of cellular
networks and battery consumption of smart devices. To do so, we
focus on scenarios when many smart devices compete for cellular
resources in the same base station: spreading out transmissions
over time so that only a few devices transmit at once improves both
spectral efficiency and battery consumption. To this end, we devise
two novel features in CASTLE. First, we explicitly consider inter-
cell interference for accurate cellular load estimation. Based on
our observations, we exploit the RSRQ (Reference Signal Received
Quality) and SINR as features in a machine learning algorithm to
accurately estimate the cellular load. Second, we propose a fully
distributed scheduling algorithm that coordinates transmissions be-
tween clients based on the locally estimated load level at each client.
Our formulation for minimizing battery consumption at each device
leads to an optimized backoff-based algorithm that fits practical
environments. To evaluate these features, we prototype a complete
LTE system testbed consisting of mobile devices, eNodeBs, EPC
(Evolved Packet Core) and application servers. Our comprehensive
experimental results show that CASTLE’s load estimation is up to
91% accurate, and that CASTLE achieves higher spectral efficiency
with less battery consumption, compared to existing centralized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326086

scheduling algorithms as well as a distributed CSMA-like proto-
col. Furthermore, we develop a light-weight SDK that can expedite
the deployment of CASTLE into smart devices and evaluate it in a
commercial LTE network.

CCS CONCEPTS
• Networks → Mobile networks; Packet scheduling; Network
measurement;

KEYWORDS
LTE; Cell Load; Distributed Scheduling; Energy Saving

ACM Reference Format:
Jihoon Lee, Jinsung Lee, Youngbin Im, Sandesh Dhawaskar Sathyanarayana,
Parisa Rahimzadeh, Xiaoxi Zhang, Max Hollingsworth, Carlee Joe-Wong,
Dirk Grunwald, and Sangtae Ha. 2019. CASTLE over the Air: Distributed
Scheduling for Cellular Data Transmissions. In The 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’19), June
17–21, 2019, Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3307334.3326086

1 INTRODUCTION
The volume of mobile data traffic increases exponentially, partly
due to the rapidly growing number of mobile-connected devices
active on the Internet. For instance, there will be 11.6 billion mobile-
connected devices by 2021. Among these devices, the number of
Machine-to-Machine (M2M) connections is expected to grow at a
34% CAGR (compound annual growth rate) and reach 3.3 billion
by 2021 [7]. To cope with the traffic demand from these devices,
recent work has focused on developing new low power wide area
communication technologies for Internet-of-Things (IoT) devices.
Such technologies are designed to meet the requirements of long
battery life, low device cost, and extended coverage [3], and so gen-
erally support low data rates with unreliable connectivity. Many

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

417

https://doi.org/10.1145/3307334.3326086
https://doi.org/10.1145/3307334.3326086

“smarter” services, however, necessitate reliable delivery of large vol-
umes of data, e.g., for applications like autonomous driving, smart
cities/infrastructures and connected healthcare [8]. Indeed, by 2021
most mobile devices will have some form of cellular connectivity
in order to meet these performance needs [7].

Today’s cellular networks are, however, ill equipped to handle
the growing number of cellular devices and their data demand.
Firstly, a huge number of simultaneously active smart devices1 can
lead to very low per-device throughputs and even short-term un-
fairness [32]. Specifically, the scheduler implemented in the cellular
base station (BS) enforces fair scheduling irrespective of device
and application types [5]; it is unaware of the device type and the
payload cannot be decoded in the BS due to upper-layer end-to-end
encryption (e.g., HTTPS). Secondly, smart devices can incur sig-
nificant battery consumption due to enlarged transmission times
when the cellular load is very high or congested [6].

Given these limitations, many devices would prefer to utilize
the network when the cellular load is low and few other devices
are active. By doing so, they can significantly increase spectral effi-
ciency, and thus help the network cope with the increased amount
of data traffic. However, this requires client devices to estimate
the cellular load in real time with negligible energy expenditure,
which presents a research challenge. For instance, the cellular load
is impacted by the amount of traffic generated by other devices in
the network and changes dynamically over time [16], as well as
across geographical locations and environmental conditions [29].

Some prior work has presented client-based load estimation in
commercial cellular networks, e.g., [6, 28]. The basic idea is that
the Reference Signal Received Quality (RSRQ) measured at the
mobile client can imply the current load level of the cell serving the
client. In this work, we experimentally confirm a high correlation
between RSRQ and achievable throughput: user devices with higher
RSRQ achieve higher throughput. However, this correlation breaks
down at the edge of the cell, where the device may experience
interference fromneighboring cells.We explicitly consider inter-cell
interference, empirically demonstrating that the RSRQ is degraded
by interference from the neighbor cells, but that considering the
observed Signal to Interference and Noise Ratio (SINR) as well as
RSRQ can lead to accurate load estimates even in the cell edge. Our
experimental evaluation shows that we can attain 83–91% accuracy
in the presence of inter-cell interference.

Even if the cellular load is known, distributed coordination mech-
anisms are needed to make sure that too many devices do not try
to take advantage of low-load times, thus ensuring the load re-
mains low and yielding efficient transmissions. In typical cellular
networks, the BS runs a centralized scheduling algorithm for the
attached clients based on its own policy, e.g., proportional fair-
ness [22]. By taking link quality and each client’s historical through-
put into account, it allocates fewer time/frequency resources to ex-
isting clients and more to newly joined clients. Thus, as the number
of competing devices increases, devices will likely receive downlink
data in a discontinuous and bursty manner, leading to high energy
consumption, as analyzed in [11]. In addition, existing centralized
scheduling algorithms are unaware of application requirements like
1We define “smart devices” as devices with at least a 3G cellular data connection. We
also use a device, client, user, and user equipment interchangeably in the rest of our
paper.

transfer deadlines and are not designed to minimize device energy
expenditure, e.g., maximizing short-term fairness in throughput
instead. Hence, a centralized scheduling approach requires signif-
icant modification of the Long Term Evolution (LTE) standard to
achieve high energy efficiency of devices.

To avoid the disadvantages of typical centralized scheduling al-
gorithms, we design a fully distributed scheduling framework called
CASTLE (Client-side Adaptive Scheduler That minimizes Load and
Energy) that coordinates transmissions among different clients
based on the load level estimated at each device. Our algorithm is
qualitatively similar to LoadSense’s Peek-n-Sneak protocol [6], in
which each client performs a simple CSMA-like operation before
obtaining a scheduling opportunity from the BS based on the bi-
nary estimation of cellular load. However, we take a theory-driven
approach that guarantees optimal performance. In particular, we
formulate and solve the problem of minimizing the battery con-
sumption of eachmobile device, subject to an achievable throughput
constraint based on the aforementioned load estimation consider-
ing inter-cell interference. Our estimation algorithms allow us to
dynamically adapt the solution to this optimization problem as
the load changes, unlike LoadSense’s long observation period of 3
seconds.

We have implemented CASTLE as a light-weight software devel-
opment kit (SDK) on the Android platform that provides cellular
load estimation as well as a distributed scheduling service. Our
experimental evaluations show some key results: (i) CASTLE dras-
tically reduces the energy expenditure of User Equipments (UEs) –
the downloading time with CASTLE is reduced by 5–53% compared
to Peek-n-Sneak, and by 78–87% compared to centralized propor-
tional fair scheduling algorithms; (ii) CASTLE improves the spectral
efficiency by 12–17% and 20–57%, compared to Peek-n-Sneak and
centralized scheduling, respectively.

Our paper makes the following contributions.

• We propose a theoretical model for the cell load esti-
mation and a novel scheduling algorithm (§3) for smart
devices in cellular networks. We refine an analytical model
of estimating the cellular load to explicitly consider inter-
cell interference, unlike existing work such as LoadSense [6].
The scheduling algorithm minimizes devices’ battery expen-
diture in idealized conditions, thus guaranteeing maximal
spectral efficiency. Furthermore, each device runs the algo-
rithm in a fully distributed manner using key parameters
derived from our optimization framework.

• Weprovide aCASTLE SDK (§4). The CASTLE SDK is avail-
able in [17], consisting of an API, channel inference module
and scheduler module for Android devices. To minimize the
SDK’s energy expenditure, as is needed for smart applica-
tions, we exploit several techniques including a lookup-based
load inference using passive UE measurements.

• Wedemonstrate via our fully controllable LTE testbed
and a commercial LTE network (§5) that CASTLE can
accurately estimate the cellular load in comparison with
the ground truth directly obtained from the eNodeB, which
has not been done so far. We also confirm that CASTLE
outperforms other schemes such as Peek-n-Sneak and other
centralized schedulers in terms of spectral efficiency and

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

418

battery consumption. CASTLE’s benefits hold not only in
static scenarios but also in case of UE mobility.

In §2, we present our system design and use cases; §3-5 describe
our research contributions. §6 discusses remaining issues, and §7
presents related work. We conclude the paper in §8.

2 CASTLE DESIGN
We propose CASTLE, a distributed scheduling framework that
jointly optimizes the spectral efficiency of LTE networks and the
battery consumption of smart devices. We discuss CASTLE’s design
challenges (§2.1) before presenting CASTLE’s architecture in §2.2.

2.1 Design Challenges
In designing our load- and energy-aware scheduling framework,
we solve several technological challenges:
Theory and practice for estimating the current cell load. Our
estimation algorithm for the cell load is based on a theoretical
inference model, and we also aim for the algorithm to be practical
considering inter-cell interference and computational complexity.

• Consider interference. Adding base stations has histori-
cally been an effective method to increase the capacity of
cellular networks, and dense deployments of small cells are a
key feature of future wireless networks. Users in such dense
base station deployments naturally incur inter-cell interfer-
ence, which is a major limiting factor in LTE networks. Some
prior work has presented client-based load estimation. Load-
Sense [6] is not generally applicable, since it requires a prior
per-site measurement to estimate the cell load. CLAW [28]
quantitatively models the relation between the cell load and
physical-layer statistics, which does not require the prior
per-site measurement. However it may not be practical in
multi-cell environment, since no interference is considered.
CASTLE analytically predicts the achievable throughput of
a UE based on RSRP, RSRQ, and SINR, accurately estimating
the cell load requires a machine-learning (ML) approach to
take into account the inter-cell interference.

• Maintain low computational complexity. Running such
an ML algorithm in real time will incur excessive computa-
tional overhead. For some small-sized devices, a high compu-
tational overhead may not be acceptable. Therefore, CASTLE
takes a low computational complexity approach which uses
a Cell Load Lookup Table with pre-trained results.

• Be practical. CASTLE SDK should run on the existing An-
droid OS, and the SDK needs to be easily integrated with any
client application using only a few lines of code. piStream [27]
and CQIC [19] assumed a cross-layer interaction with the
LTE PHY, which is not easily applicable without obtaining
privileged control over Android’s subsystem.

Distributed transmission scheduling formultiple devices. Our
proposed scheduling algorithm is inspired by combining Carrier
Sense Multiple Access (CSMA) with CASTLE’s cell load estimation.

• Maximizing battery efficiency. Our distributed schedul-
ing algorithm aims to minimize UE energy expenditure, as
long as the traffic is sent within a given deadline. Minimizing
the total energy expenditure of transferring a fixed amount

PHY Info Interface

RSRP, RSRQ,
SINR

Scheduler

Channel Inference

OS Traffic Scheduler

CASTLE SDK

Applications

Channel
Sensing

Throughput
Estimation

Cell Load
Lookup Table

Application Programming Interface

App Store

…
Firmware
Update

ML Data
Update Download File Sharing

User Space

Figure 1: CASTLE architecture. Applications can leverage
the CASTLE API to schedule their traffic based on accurate
estimates of the cell load.

of data is equivalent to minimizing the average energy per
bit. Since the energy per bit at any time decreases as the UE
achieves higher instantaneous throughput, the problem is
equivalent to maximizing the average throughput over all
time slots in which UE is active. Given the estimated cell
load, the UE needs to decide when to start downloading.
Transferring data at a congested time requires more power
expenditure.

• Application-aware scheduling. Since a UE typically runs
multiple applications at the same time, the CASTLE SDK
should support per-application scheduling service with dif-
ferent performance requirements (e.g., the data amount to
be downloaded, deadline, etc.).

• Fully distributed coordination. Schedulingmultiple flows
in a distributed manner for this objective, however, is quite
challenging since the scheduling needs to operate based
solely on local information available on each UE.

• Coexistence. The coexistence of CASTLE’s scheduling and
the existing LTE centralized scheduling schemes should be
considered. To verify this feature, we used randomly gener-
ated background traffic that was not scheduled by CASTLE
in §5.4, and we also tested CASTLE on a commercial network
in §5.5.

2.2 Architecture
Figure 1 illustrates the architecture of CASTLE, which is provided
as an SDK. Applications can interact with the CASTLE API to ben-
efit from our energy-efficient, load-aware download scheduling
algorithm; §6 outlines some types of applications that can particu-
larly benefit from CASTLE. The expected throughput is estimated
by the Channel Inference module and fed into the Scheduler mod-
ule. The Channel Sensing module periodically obtains PHY-layer
information (e.g., RSRP, RSRQ, CQI, and SINR)2. To minimize the
computational overhead, CASTLE uses the Cell Load Lookup Ta-
ble, which populates the cell load level for each RSRP, RSRQ, CQI,
and SINR pair by using both our analytical models in §3.4 and ma-
chine learning for the inter-cell inference scenario. This enables

2The CellSignalStrengthLte class on Android provides the LTE PHY-layer information.

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

419

an efficient O(1) lookup. The Scheduler module then decides the
transmission schedule for the application traffic according to the
algorithm presented in §3.2.

3 SYSTEM MODEL
We first provide an overview of CASTLE’s scheduling in §3.1. To
optimize the parameters used in the scheduling algorithm, we for-
mulate the problem to minimize the UEs’ total energy expenditure
in §3.2. We then transform this problem into one where each UE
estimates its expected throughput and then finds the optimal back-
off parameters to be used for its data transfer, in §3.3. §3.4 presents
an algorithm to estimate the UE throughput, which §4 extends to
handle inter-cell interference.

3.1 CASTLE’s Scheduling
Unlike centralized scheduling, a distributed scheduling algorithm
depends on random access and thus needs to determine when to
send and how long to wait when there is a collision (i.e., when
multiple nodes transmit at the same time), analogous to CSMA
(Carrier Sense Multiple Access). However, unlike CSMA, in which
the transmission happens after a “blind” random backoff based on
the number of collisions, CASTLE lets each UE make an informed
decision on the backoff parameters based on an estimate of its
expected throughput.

Figure 2 illustrates the operation of CASTLE by two UEs3. The ex-
pected throughputA(t) is estimated every one second time slot, and
is compared to the optimal threshold A∗. If the expected through-
put is greater than or equal to the threshold, the download can
be started. However, there may be many UEs that estimate their
expected throughput condition is now satisfied, which could lead to
more contentions. Therefore, CASTLE waits for a random backoff
interval that is selected uniformly in the range [0, Rbmax] before
starting the transmission. After the expiry of this backoff interval,
the UE checks this condition again before starting its transmission.
Otherwise, CASTLE cancels its transfer and waits until the expected
throughput becomes higher than the threshold.

3.2 Problem Formulation
We consider the problem of N UEs connected to an LTE eNodeB
over a series of T time slots, indexed by t = {1, 2, ...,T }. We term
a UE “active” at time t if it is downloading data at that time4. To
reflect the resource allocation regime in existing cellular networks,
we consider that the BS uses proportional fair scheduling to allocate
resources to all active UEs within any given time slot t . Note that
the BS’ scheduling is done at a much finer timescale (i.e., 1 ms
granularity) than the UE activity [5]. Suppose that there are a total
number of resource blocks (RBs) that can be allocated at time slot t
(denoted by ltotal(t)), and that each UE has one download flow to
complete.

At the beginning of each time slot, each UE can estimate the
current load on the network using the method in §3.4. We denote
this estimate as lused(t), with the condition of 0 ≤ lused(t) ≤ ltotal(t);

3CASTLE’s scheduling works not on a per-UE basis, but rather on a per-application
basis. For simplicity, a single application is assumed in Figure 2.
4In this work, we do not consider a upload scenario as most cellular traffic happens in
the downlink as measured in [16].

Download

Download

Random
Backoff

Random
Backoff

User A

User B

A(t) >= A* Random wait between [0, Rbmax]A(t) < A*

time slot = 1sec

Random
Backoff

t

t

Both users sense A(t) >= A*
at the same time

If A(t) < A at the end of
backoff, wait.

Note that A(t) is updated for every time slot.

If A(t) >= A at the end of backoff,
start to download.

If A(t) >= A,
start a random backoff again.

Figure 2: CASTLE’s scheduling: Users A and B check the con-
dition ofA(t) ≥ A∗ to start the download after a randomback-
off. User B cannot start the download after the backoff since
User A’s download has led User B to estimate that its A(t) is
less than A∗.

the load is the average number of allocated RBs per each 1 ms LTE
subframe during the time slot t . Given the estimated lused(t) and
knowing that other UEs may be making the same decision, the UE
must now decide when to start downloading. While it would like
to receive as much data as possible, which could be achieved by
downloading in every time slot, transferring data at a congested
time requires more power expenditure; thus, the UE would prefer
to receive only at less congested times.

To trade off between these objectives, the UE should make use of
its (known) received signal strength, which we represent as sn (t)
for UE n at time t ; this can be further interpreted as the number of
bytes transmitted per RB allocated to the UE as specified in [2]. Let
ϕn denote the total amount of data that UE n would like to transfer.
Let DDLn denote the number of time slots between the time UE n
has the data to transfer and its deadline. Since ϕn and DDLn are
application-specific parameters, we can assume that ϕn

DDLn is the
same, for all UEs n using the same application.

Each UE minimizes its energy expenditure by solving:

min
∑T
t=1 e (xn (t),д(sn (t),x(t), lused(t))) , (1)

s.t.
∑T
t=1 xn (t) × д(sn (t),x(t), lused(t)) ≥ ϕn , (2)

CTn ≤ DDLn ,∀n, (3)

where xn (t) is an indicator variable on whether UE n downloads
at time t (xn (t) = 1) or not (xn (t) = 0), e(·) denotes the energy
expenditure of the UE in time slot t , д(·) denotes the number of
bytes downloaded as a function of UE n’s current signal strength
and the cell load in time slot t , andCTn denotes the completion time
for downloading ϕn . Here we use x(t) to denote an N -dimensional
decision vector for all UEs in slot t .

To solve (1–3), we note that
∑T
t=1 xn (t)д(sn (t),x (t),lused(t))∑T

t=1 xn (t)
repre-

sents the average amount of data downloaded over all time slots
in which the UE is active. Minimizing the total energy expenditure
of transferring a fixed amount of data is equivalent to minimizing
the average energy per bit. Since the energy per bit at any time de-
creases as the UE achieves higher instantaneous throughput, (1–3)

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

420

is equivalent to maximizing the average throughput over all time
slots in which UE is active.

We can now parameterize our strategy for deciding xn (t), i.e.,
whether UE n should transmit or not at each time t . At each time t ,
UE n first estimates the total amount of data An (t) it can download
as

An (t) = sn (t)(ltotal(t) − lused(t)). (4)
The UE then compares An (t) with an optimized threshold A∗

n
(which is derived in §3.3). If An (t) ≥ A∗

n , it randomly picks a back-
off time Rbn (t), which is drawn from a uniform distribution over
[0, 1, ...,Rbmax] and is i.i.d. for all UEs over time. Let Rb = Rbmax/2
denote the mean random backoff time. For long-term fairness, we
require that each UE is active for at most MTT (Maximum Transfer
Time) consecutive time slots. Otherwise (i.e., An (t) < A∗

n), the UE
does not download data and continues to sense in the next time
slot.

Since the xn (t) are determined by A∗
n and Rbmax (equivalently

Rb), we now optimize these parameters. SupposeAn (t) is a random
variable uniformly drawn from the range [a,b] and is i.i.d. over
time. Thus, the expected amount of data downloaded in each slot t
(conditioned on the fact An (t) ≥ A∗

n and that the UE is not in the
middle its backoff time) is as follows:

E{д(·)} =
E{total data to be downloaded in slot t}
E{total number of active UEs in slot t}

=
(A∗

n + b)/2(
(N (t) − 1) × MTT

Rb+MTT
+ 1

) , (5)

where N (t) denotes the expected total number of UEs at time t and
we use the fact that eachUE is active for an averageMTT /

(
Rb +MTT

)
time slots. We assume that N (t) is a constant in the rest of the for-
mulation. This makes sense since the number of active UEs varies
significantly in a longer timescale, not in a shorter timescale, as
measured in [16]. Let E{CTn } denote the expected completion time
of UE n, which can be approximated as follows:

E{CTn } =
ϕn

E{д(·)}P{An (t) ≥ A∗
n }P{UE n is downloading}

=
ϕn

A∗
n+b

2
(
(N (t)−1)· MTT

Rb+MTT
+1
) ×

1
b−A∗

n
b−a

×
1

MTT
Rb+MTT

.
(6)

From the deadline requirement for data delivery, we should guaran-
tee that E{CTn } ≤ DDLn , ∀n. Rearranging the above relationship,
we get the constraints:

MTT

Rb +MTT
≥

1
DDLn (b2−A∗2

n)

2ϕn (b−a) − N (t) + 1
, (7)

DDLn (b
2 −A∗2

n)

2ϕn (b − a)
> N (t) − 1. (8)

We finally remark that since N (t) is a constant the throughput
achieved by the active UE (i.e., Eq. (5)) is a constant, as well. Thus,
our original problem (1–3) is equivalent to solving the following:

max
A∗
n,Rb

A∗
n + b

2
(
(N (t) − 1) · MTT

Rb+MTT
+ 1

) , (9)

s.t. (7), (8), ∀t = 1, · · · ,T ,∀n.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

SINR (dB)

Avg

Figure 3: The single UE cell throughput in a 20MHz channel.
Measured with a Motorola G5 Plus, Samsung Galaxy S5, and
Samsung Galaxy Note4.

3.3 Calculation of A∗
n and Rb

Combining Eq. (6) with Eqs. (9) and (7), we know that for each UE
n, the optimal Rb and A∗

n should satisfy E{CTn } = DDLn . Hence,
we replace the term MTT

Rb+MTT
in (9) by

(DDLn (b2−A∗2
n)

2ϕn (b−a) −N (t)+1
)−1

and solve for A∗
n by maximizing (9) with the single variable A∗

n . If
ϕn

DDLn is the same for all n, then A∗
n will be the same for all UEs.

Given the optimal A∗
n , the mean random backoff time Rb can be

directly derived from MTT
Rb+MTT

=
(DDLn (b2−A∗2

n)

2ϕn (b−a) − N (t) + 1
)−1.

Thus, we obtain the following:

Rb = max
{
MTT ×

(
DDLn (b

2 −A∗2
n)

2ϕn (b − a)
− N (t)

)
, 0
}
.

Each parameter in this equation is known to the UE, except for
N (t). In §5.4, we show that the UE can estimate N (t) accurately
enough to achieve good performance in practice.

3.4 Estimation of An(t)
We estimate the amount of data that can be downloaded, An (t),
with two parameters: (i) the transport block size per RB based on
the received signal strength sn (t) and (ii) the number of available
RBs lunused(t) from the relation lunused(t) = ltotal(t) − lused(t). In
§4, we modify our estimate of lunused(t) to account for inter-cell
interference.

Once an LTE UE measures its wireless channel, it obtains the
RSSI (Receive Strength Signal Indicator), RSRP (Reference Signal
Received Power), and SINR (Signal to Interference and Noise Ra-
tio) [1]. The RSSI is the linear average of the total received power
observed over the total number of resource blocks in a channel,
by the UE from all sources, including co-channel serving and non-
serving cells, adjacent channel interference, thermal noise etc. The
RSRP is the average power of the resource elements that carry
cell-specific reference signals. The SINR is defined as the power
of a certain signal of interest divided by the sum of the power of
interference and noise, which is a measure of channel quality. In
LTE, the channel quality indicator (CQI) of a UE is determined by
the SINR of the UE and is reported to the serving eNodeB. Then,
the eNodeB decides a modulation and coding scheme (MCS) and
transport block size (TBS) of the UE based on the CQI reported [2].

From Eq. (4), sn (t) represents the bitrate per RB at time slot t for
UE n. Since sn (t) can be directly derived from the index of TBS, we
assume that sn (t) can be represented as a simple linear function of
SINRn (t). To verify this, we measured a single UE cell throughput
with a range of SINR values in our LTE testbed. Because a link
adaptation algorithm is implementation-specific, three different

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

421

Table 1: Values of kj,l for different number of antennas

k with number of antennas j l = idle l = f ull

k1,l 2 12
k2,l 4 20
k4,l 4 36

Ref. 3GPP TS 25.814

Data

Reference signal

No transmission

R0

R0

R0

R0

Time slot

12
 S

ub
ca

rr
ie

rs

R1

R1

R1

R1

Antenna port 0 Antenna port 1

power allocation

UE
Measurement

UE
Measurement

Figure 4: One RB consists of 12 subcarriers (12 × 15 KHz)
in the frequency domain and one slot (0.5 ms) in the time
domain. Power is allocated only to 2 REs of the reference
signal per antenna in a UE measurement.

models of UEs are tested, and Figure 3 verifies that the throughput
and SINR are proportional. Therefore, sn (t) can be rewritten as

sn (t) ≈
η

NRB
×
SINRn (t)
SINRmax

, (10)

for some constant η, where NRB is the total number of RBs and
SINRmax is the maximum SINR value5.

We will now estimate the number of available (i.e., not used)
resource blocks at time slot t , lunused(t), in terms of the Reference
Signal Received Quality (RSRQ). Prior work in LTE cell load analysis
revealed that the RSRQ can be used to quantify the LTE channel
resource utilization [6, 28]. In fact, RSRQ is the power ratio between
RSRP and RSSI as follows:

RSRQ = NRB ×
RSRP
RSSI

. (11)

Figure 4 depicts the power allocation of a single RB with a 2
antennas configuration. An LTE eNodeB allocates radio resources
to UEs in the unit of RBs. A resource element (RE) is the smallest
resource unit in the LTE physical layer (the smallest box in Figure 4),
which spans one OFDM symbol in time and one OFDM subcarrier
in frequency. In the LTEMAC layer, the RB is the smallest allocation
resource unit. Typically, each RB contains 7 × 12 REs as it spans
across 7 time-domain symbols (one slot) and 12 frequency-domain
subcarriers [2]. In the time domain, a one 1ms LTE subframe con-
sists of two slots. An LTE frame has 10 subframes, which is 10ms.
In the frequency-domain, there are 25 RBs for each 5 MHz channel
bandwidth. For a 20 MHz channel, there will be 100 RBs.

When the cell is idle, only the power of reference signals is
measured as shown in Figure 4; RSSI will be 4×RSRP from the two
antennas6. Let α and β be the RSRQ values measured by a UE for
5For most LTE UEs, 30 dB is typically assumed.
6The RSSI is measured only in the configured OFDM symbol that carries the reference
signal.

an idle cell and a fully loaded cell, respectively. Then we have

α =
NRB · RSRP

kj, idle · RSRP · NRB + I
, (12)

αI=0 = (kj, idle)
−1, (13)

where kj,idle is a constant as shown in Table 1 representing the
number of reference signal REs in the duration of UE measurement
for the number of antennas j, and I is the interference power from
other signals. If the interference is ignored, it becomesmuch simpler
so that α will be 1/kj, idle.

On the other hand, there are a total of 16 data REs and 4 REs
of reference signals when the cell is fully loaded. Then β can be
expressed as

β =
NRB · RSRP

kj, full · RSRP · NRB + I
, (14)

βI=0 = (kj, full)
−1, (15)

where kj, full is the number of all available REs except for some
REs that are not allowed to be used in the 3GPP standard7. If we
ignore the interference term (I), Eqs. (13) and (15) are inversely
proportional to the RB usage. Therefore, lunused(t) can be written
as

lunused(t) ≈ NRB ×
RSRQ(t) − β

α − β
. (16)

From Eqs. (4), (10) and (16), we estimate the amount of data that
can be downloaded for user n, which is expressed as

An (t) ≈ η ×
SINRn (t)
SINRmax

×
RSRQ(t) − β

α − β
. (17)

To account for interference, we can instead estimate lunused(t)
in Eq. (16) with machine learning methods, as we do in the next
section.

4 IMPLEMENTATION
LTE testbed:We built an end-to-end LTE testbed to evaluate CAS-
TLE, as shown in Figure 5. The testbed consists of UEs, eNodeBs,
EPC (Evolved Packet Core), and application servers. For the eN-
odeBs, we use two commercialized indoor LTE Band3 small cell
products, Juni JL620 [15], which are connected to GPS to correct
frequency offsets. We placed multiple UEs from various vendors
and models inside a shield box, so that the UEs can communicate
with the eNodeBs via a pair of antennas inside the box. The signal
attenuator installed between the antenna located in the box and
eNodeBs outside provides appropriate signal strengths to the UEs
and further allows us to emulate a variety of RF situations, includ-
ing interference from neighbor cells. For the EPC, we use the open
source software from NextEPC [20]. The application servers gather
cell-specific information from both the UEs and eNodeBs.
eNodeBs: In order to obtain the ground truth on the cell load, we
modify the eNodeBs to report the actual cell load to the applica-
tion servers at one second intervals. We also modify the eNodeB’s
scheduling algorithm to adjust a tradeoff between efficiency and
fairness in the centralized scheduler. For this, we received technical
support from the manufacturer.
7For the sake of simplicity, we assume that the power levels of all data REs are the
same to the RSRP.

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

422

EPC
192.168.1.254

45.45.0.1

UEs
45.45.0.0/16

To campus network
/ Internet

Machine learning and
application servers GPS for time/freq synchronization

USIMsOpensource EPC Commercial eNodeBs

Shield box and LTE phones

Signal attenuator

eNodeBs
192.168.1.0/24

Actual load

RSRQ, RSRP,
SINR, CQI

Figure 5: Our controllable end-to-end LTE network testbed composed of eNodeBs, UEs, an EPC, a signal attenuator, and a
shield box. We used 2x LTE Band3 FDD eNodeBs and 10x LTE phones for the experiments.

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

 0 20 40 60 80 100

R
S

R
Q

 (
d
B

)

Cell Load (%)

Measured
αI=0
βI=0

Figure 6: Measured average RSRQ in idle
channel as a function of cell load.

−14

−12

−10

−8

−6

−4

−2

 0

−120−115−110−105−100

R
S

R
Q

 (
d
B

)

RSRP (dBm)

0%, no interference
w/ interference

50%, no interference
w/ interference

100%, no interference
w/ interference

Figure 7: Measured RSRQ with co-
channel interference.

0.
00

-0
.2

5

0.
25

-0
.5

0

0.
50

-0
.7

5

0.
75

-1
.0

0

Predicted Cell Load

0.00-0.25

0.25-0.50

0.50-0.75

0.75-1.00
T

ru
e

C
el

l
L

oa
d

0.94 0.06 0.00 0.00

0.02 0.92 0.06 0.00

0.00 0.05 0.92 0.03

0.00 0.00 0.05 0.95

0

20

40

60

80

P
er

ce
nt

Figure 8: Normalized confusion matrix
on cell load estimation.

Application servers: The application servers collect both actual
cell load information from eNodeBs and measurement reports from
each UE at the same time. The eNodeBs and UEs send report packets
with GPS time stamps so that we can match them at the servers.
Cell load estimation with machine learning: As shown in Fig-
ure 6, we confirm that the measured RSRQ of a cell is a good indica-
tor of the current load of the cell, regardless of the RSRP value [28],
when there is no interference. With interference, however, RSRQ-
based estimation is not accurate. Figure 7 shows the RSRQ measure-
ment at the cell edge when there is co-channel interference from
a neighboring cell. We set the neighbor cell to be fully loaded so
that it can cause a significant level of interference at the edge of the
serving cell. As defined in Eq. (11), we observe that the measured
RSRQ is degraded as the RSSI increases due to the interference,
which, in turn, creates a challenge of improving the accuracy of the
cell load estimation in the presence of interference. This is quite
common in real-world environments as measured in [16]. We fur-
ther found that the SINR values are degraded compared to those
in the idle channel. Therefore, in order to obtain the relationship
between RSRP, RSRQ, SINR, and cell load, we trained a non-linear

Support Vector Machine (SVM) classifier on our measurements.
Our estimated idle portion of cell load corresponds to the ratio
RSRQ(t)−β

α−β in Eq. (16).
The ML server runs the popular (Gaussian) Radial Basis Function

(RBF) kernel of SVM. The range of the cell load (0− 100%) is divided
into four smaller intervals: 0 − 25%, 25 − 50%, 50 − 75%, and 75 −
100%, each corresponding to a label in the classification algorithm.
We use 60% of our measurements as training data and 20% for
cross-validation. The accuracy of our trained SVM classifier on
the remaining 20% of the data is about 93%, with the normalized
confusion matrix shown in Figure 8. Note that, if we decrease the
number of load classes to two (i.e., 0 − 50% and 50 − 100%), as
explored by LoadSense, the accuracy is increased to more than 97%
with our test dataset. If we increase the number of load classes
to more than 4, the accuracy will be degraded due to the coarse
granularity of RSRQ values that we can get through the existing
Android API.
CASTLE SDK: At each UE, the channel inference module of CAS-
TLEmaintains a mapping table (Cell Load Lookup Table) that inputs
the RSRP, RSRQ, and SINR values and outputs the estimated load

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

423

Figure 9: An example code using CASTLE API: With only 3
lines, a basic CASTLE operation is supported.

class. The table consists of 45,198 entries where each entry is en-
coded with 2 bits to represent four classes of cell load. The total
table size is about 89 KBytes which is reasonably small for today’s
smart devices. We also implement CASTLE’s Scheduler module. It
estimates the throughput using the RSRQ, RSRP, SINR, andmapping
table at every time slot (i.e., 1 sec), and decides when the download
starts. The CASTLE SDK is available in [17], which includes the
following APIs:

• castle_predict_class_short() - predict the class with instanta-
neous RSRQ, RSRP, SINR measurements.

• castle_predict_class_long() - return the class mostly picked
from the recent 10 consecutive measurements. In general,
it is more accurate than castle_predict_class_short(), since it
can ignore a UE measurement error.

• castle_schedule() - schedule a download. It compares the
estimated throughput A(t) and the threshold A∗ to decide
when the download starts. If A(t) < A∗, it stays silent for
this time slot as long as its DDL has not yet come. If the DDL
expires, it starts the download anyway.

Applications: Figure 9 shows an Android FTP client program we
implemented that leverages CASTLE APIs.

5 EVALUATION
In this section, we first evaluate the performance of CASTLE’s
load estimation (§5.1). Next, we compare CASTLE with Peek-n-
Sneak [6] and centralized scheduling at the eNodeB in terms of
energy expenditure and spectral efficiency in stationary (§5.2) and
mobile (§5.3) environments. Finally, we investigate the effect on
the CASTLE performance of varying the number of participating
users N (t) in §5.4.

For the centralized scheduling algorithms at the eNodeB, two
different proportional fair scheduling algorithms are tested: ‘PFS-
FAIR’ and ‘PFS-TPUT’. In general, PFS running in a commercial BS
achieves a desirable tradeoff between average cell throughput and
fairness; the Jain’s fairness index [14] of the default eNodeB sched-
uler in our testbed is measured as 0.7. Compared to PFS, ‘PFS-FAIR’
improves fairness by strictly guaranteeing fair allocation of wireless
resources to all users (Jain’s index approaches 1), while ‘PFS-TPUT’
improves efficiency by assigning more wireless resources to the
users who have the better channel quality (Jain’s index is measured
as 0.5). We modified the PFS to test PFS-FAIR and PFS-TPUT. For
our experiments with mobility and co-channel interference, we
construct a multi-cell environment.

Table 2 lists the experimental parameters used. As shown in
Figure 3, a and b are set to 0 and 140 as the minimum and maximum
achievable throughputs in Mbps, respectively. We consider the

Figure 10: Evaluation of CASTLE, Peek-n-Sneak, and two
PFS algorithms with 10 UEs (right) and a snapshot of one
UE running CASTLE (left).

Table 2: Parameter settings for CASTLE evaluation

Parameter Value Parameter Value

a 0 b 140
ϕn 800 DDLn 800
MTT 1 N (t) 10

 0

 20

 40

 60

 80

 100

Class 1

Class 2

Class 3

Class 4

Overall

A
c
c
u

ra
c
y
 (

%
)

CASTLE
RSRQ-based estimation

(a) Low interference

 0

 20

 40

 60

 80

 100

Class 1

Class 2

Class 3

Class 4

Overall

A
c
c
u

ra
c
y
 (

%
)

CASTLE
RSRQ-based estimation

(b) High interference

Figure 11: Evaluation of the load prediction: (a) CASTLE
shows 91% accuracy. (b) CASTLE shows 83% accuracy.

download of a 100 Mbyte file (ϕn = 800 Mbits and DDLn = 800
seconds), whereas a 1000 Mbyte file is used for the simulation (ϕn =
8000 and DDLn = 32000). MTT controls the level of contentions
like Rb, which is set to 1. We set N (t) to 10 unless stated otherwise.
An error bar in the graphs represents a standard deviation.

5.1 Accuracy of Load Estimation
Test scenario: As explained in Section 4, we collected the ground
truth of the cell load. We also used castle_predict_long() in each
UE to report the cell load class to the application server so that we
can compute the accuracy of CASTLE’s load estimation. When the
reported class exactly matches the actual cell load, it is counted as
a success. We compare it with the RSRQ-based estimation [28]. We
configure a full load at the neighbor cell so as to generate inter-
ference at cell edges. For each case, we took 48,000 measurements
with multiple UEs locating at the cell center and edges.
Performance comparison: Figure 11a shows the accuracy of the
estimated load class achieved by CASTLE at the cell center (i.e.,
low interference). CASTLE reveals 98% accuracy for Class 1, 90%
for Class 2, 85% for Class 3, and 91% for Class 4. It outperforms the

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

424

 0

 50

 100

 150

 200

Center Middle Edge

D
o

w
n

lo
a

d
in

g
 T

im
e

 (
se

co
n

d
s) CASTLE

Peek−n−Sneak
PFS−FAIR

PFS−TPUT

Figure 12: Comparison of average downloading time when
UEs are stationary. CASTLE shows reduction of download-
ing time by 5–53% and 78–87%, compared to Peek-n-Sneak
and two PFS algorithms, respectively.

RSRQ-based estimation which shows 98%, 84%, 70%, and 70% for
Classes 1, 2, 3, and 4, respectively. Since the RSRQ is described as
a logarithmic function from Android API, more RSRQ values are
mapped into the classes with a lower number. As a result, the accu-
racy of Class 1 is the best. The accuracy decreases as the class num-
ber increases, but Class 4 is improved because it can include lower
RSRQ measurements than the theoretical bound (i.e., RSRQ(t) < β).

Figure 11b shows that the RSRQ-based estimation is inaccurate
under high co-channel interference. It selects Class 4 for almost all
cases, because of the lower RSRQ level due to interference. There-
fore it shows 23%, 12%, and 13% accuracy for Classes 1, 2, and 3,
respectively. CASTLE still shows good performance; 90%, 86%, 72%,
and 86% for Classes 1, 2, 3, and 4, respectively.

In summary, as CASTLE is on average 91% accurate at the center
and 83% accurate at edges, these results confirm that our ML-based
load estimation technique accurately estimates the cell load for
applications that wish to know the cellular load conditions.

5.2 Effect of Location
Test scenario: We chose three different positions for 10 UEs: Cell
Center (-70 ≤ RSRP ≤ -60 dBm), Middle (-90 ≤ RSRP ≤ -80 dBm),
Edge (-110 ≤ RSRP ≤ -100 dBm). We compare the performance of
CASTLE, Peek-n-Sneak, and the two PFS algorithms by letting every
UE repeatedly download 100 Mbytes files. Thus, during the whole
experimental period, all UEs keep contending for cellular resources.
Peek-n-Sneak originally assumes the use of LoadSense [6], which
requires a prior measurement and training at the site. To isolate our
results from the impact of the load estimation accuracy, we use the
same ML-based load estimation as an input to both Peek-n-Sneak
and CASTLE. In addition, Peek-n-Sneak assumed that the channel
is idle when more than 7 Mbps throughput is expected. With our
load estimation, Classes 1 to 3 are assumed idle for Peek-n-Sneak.
For UEs, we used six Motorola G5 Plus, two Google Nexus 5X, one
Samsung Galaxy S5, and one Samsung Galaxy Note4, as shown in
Figure 10. The bandwidth of each cell is 20 MHz.
Energy expenditure: Figure 12 compares the average download-
ing time with each scheme. Note that the energy expenditure of
the UE decreases as the total download time decreases, as modeled
by [12]. First, the distributed methods, CASTLE and Peek-n-Sneak,
significantly outperform the centralized methods (PFS-FAIR and
PFS-TPUT); CASTLE especially reduces the downloading time by
78–87%. The downloading times in PFS-FAIR are similar for all
locations, while the time in PFS-TPUT decreases as the UE ap-
proaches the cell center. In both cases, however, all UEs without

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

CASTLE Peek−n−Sneak PFS−FAIR PFS−TPUTS
p

e
ct

ra
l E

ff
ic

ie
n

cy
 (

b
its

/s
/H

z)

Figure 13: CASTLE shows better spectral efficiencywhen the
UEs are stationary by 17%, 57%, and 20%, compared to Peek-
n-Sneak, PFS-FAIR, and PFS-TPUT, respectively.

load-awareness are competing for resources continuously, and the
PFS enforces short-term fairness, which leads to low performance
in terms of the energy minimization objective.

Second, we can see that CASTLE shows the best performance
for all cases: 14.9 sec at Center, 18.9 sec at Middle, and 21.4 sec at
Edge. Peek-n-Sneak shows better performance than PFS, but is still
below CASTLE: 19.8 sec at Center and Middle, and 46.0 sec at Edge.
CASTLE’s improvement is due to the fact that CASTLE utilizes
the optimal throughput threshold (i.e., A∗

n) derived from Eq. (9) to
perform an optimally chosen random backoff, while Peek-n-Sneak
simply depends on a binary decision (idle or busy) and performs
a simple random backoff irrespective of the number of UEs. Thus,
the performance of Peek-n-Sneak is not adaptive to the channel
condition and available bandwidth; a UE in Peek-n-Sneak tends to
initiate data transfers even when the cell is considerably loaded,
incurring more competition. Compared with Peek-n-Sneak, the
downloading time of CASTLE is reduced by 25% at Center, 5% at
Middle, and 53% at Edge.
Spectral efficiency: Figure 13 shows the spectral efficiency mea-
sured during the experiments. For this spectral efficiency calcula-
tion, we first measured total number of bytes transferred by CAS-
TLE, Peek-n-Sneak, PFS-FAIR, and PFS-TPUT at the application
level. We recorded the total time spent for the data transfer (i.e.,
active time). In addition, we have averaged the RB usage over time
reported by eNodeBs. The application-level spectral efficiency is
then calculated as

SE =
Btransfer

T × 20 MHz × AvgRB/100
,

where Btransfer, T , and AvgRB are transferred data size (in bytes),
transmission time, and averaged RB usage over T reported by the
eNodeBs, respectively8. CASTLE shows the best spectral efficiency
of 5.26 bits/s/Hz, while Peek-n-Sneak does not considerably out-
perform PFS-TPUT. Compared to Peek-n-Sneak, PFS-FAIR, and
PFS-TPUT, CASTLE is an improvement by 17%, 57%, and 20%, re-
spectively. In CASTLE, a data transfer can be deferred until the
expected amount of data that can be downloaded is larger than
the optimal threshold (i.e., A(t) ≥ A∗

n), and therefore, the spectral
efficiency can be increased.

5.3 Effect of Mobility
Test scenario:We next conduct experiments in a mobile environ-
ment, adding co-channel interference from the neighbor cell. Fig-
ure 14 illustrates our mobile testbed setup; two co-channel eNodeBs
are installed, two UEs are stationary in Cell A, and the remaining
8An LTE channel with 20 MHz bandwidth has 100 RBs.

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

425

co-channel
interference

Cell A Cell B

background traffic

8 mobile UEs perform HO

high load

no stationary UE

Figure 14: Mobile test scenario with handovers between co-
channel neighbor cells.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

CASTLE

Peek-n-Sneak

PFS-FAIR

PFS-TPUT

D
o

w
n

lo
a

d
in

g
 T

im
e

 (
s
e

c
o

n
d

s
) Stationary

Mobile

(a) Downloading time

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

CASTLE

Peek-n-Sneak

PFS-FAIR

PFS-TPUT

S
p

e
c
tr

a
l
E

ff
ic

ie
n

c
y
 (

b
it
s
/s

/H
z
) Stationary

Mobile

(b) Spectral efficiency

Figure 15: Stationary vs mobile: CASTLE performs bet-
ter when UEs are stationary, but still outperforms Peek-n-
Sneak, PFS-FAIR, and PFS-TPUT in mobile environments.

eight UEs continuously move and are handed off between the Cells
A and B. The mobility is emulated by the signal attenuator, which
is programmed to increase or decrease the signals of Cells A and B
by 0.5 dBm for every second, in the range of [-50 dBm, -120 dBm].
Since the two stationary UEs are continuously downloading, they
cause interference near the edge of Cell B.
Performance comparison: CASTLE heavily relies on UE mea-
surements. Higher mobility makes CASTLE’s estimation less ac-
curate, degrading its performance. In Figure 15, we observe that
CASTLE still significantly outperforms Peek-n-Sneak, PFS-FAIR,
and PFS-TPUT in a mobile environment, although its overall perfor-
mance is worse than in the stationary experiment. Due to mobility,
the average download time of CASTLE increases from 17.6 sec
to 28.0 sec, while that of Peek-n-Sneak increases from 25.7 sec to
37.1 sec in Figure 15a. Compared with Peek-n-Sneak, the download
time of CASTLE is reduced by 25%. Compared with PFS-FAIR and
PFS-TPUT, which now show similar performance, CASTLE’s down-
load time is much reduced by 78–79%. Spectral efficiency is also
degraded as shown in Figure 15b. The average spectral efficiency of
CASTLE decreases from 5.62 bits/s/Hz to 4.70 bits/s/Hz. Compared
to Peek-n-Sneak and PFS, CASTLE’s spectral efficiency is enhanced
by 12% and 55%, respectively.
Implications: Although the performance of CASTLE is degraded
in a mobile environment, we found that CASTLE still outperforms
Peek-n-Sneak and PFS. Since we assume high mobility (8 UEs move
together into another cell every 140 seconds), we can expect better
performance in many practical scenarios and/or considerations.
Some examples include 1) the UE does not continuously move; 2)
DDLn , the deadline of downloading, is long; 3) there is less inter-
ference; and 4) N (t) is small, so the higher throughput threshold
will be selected. In the next section, we describe the effect of N (t),
since it is a parameter that cannot be calculated or estimated by
individual UEs.

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250
 0

 50

 100

 150

 200

A
*

(M
b
p
s
)

M
e
a
n
 o

f
R

b
 (

s
e
c
o
n
d
s
)

N(t)

Optimal A*
Optimal mean Rb

(a) Optimal A∗ and Rb

 0

 20

 40

 60

 80

 100

 120

 100 120 140 160 180 200 220 240

U
s
e
r

D
a
ta

 R
a
te

 (
M

b
p
s
)

Total Number of UEs

Auto-tuning
N-known

PFS-FAIR

(b) Average user data rate

Figure 16: Simulation results with ϕn/DDLn = 0.25. (a) The
throughput threshold decreases as the number of CASTLE
users increases. (b) CASTLE Auto-tuning outperforms PFS-
FAIR, while it is comparable to CASTLE N-known.

5.4 Auto-tuning of N (t)
As explained in §3, N (t) is the number of concurrent UEs running
CASTLE at time slot t ; however, it cannot be exactly estimated
at a single UE. In practice, we suggest an approach to tune N (t)
over time t for each download. When a UE starts using CASTLE, it
assumes that there is no other CASTLE user, i.e., thatN (t) = 1. Then
N (t) is increasedwith a rate ofN (t)max/DDLn whereN (t)max is the
maximum value of N (t) that satisfies A∗ > 0, which can be directly
derived from N (t)max = (DDLn · b2)/(2ϕn (b − a)). For example, in
Figure 16a, N (t)max is calculated to be 280 for ϕn/DDLn = 0.25.
Thus, N (t) linearly increases over time, starting at 1, while the
threshold A∗ decreases. This approach assumes that having longer
wait times means that there are likely more CASTLE users, which
is similar to CSMA/CD where more collisions indicate more users
in the system.
Auto-tuning evaluation: In order to see the impact of this N (t)
auto-tuning on CASTLE, we conducted a large scale simulation.
We assumed a cell of 1km radius with 110–250 randomly located
UEs per cell. Each UE moves at random with speed between 0
and 120 km/h. 100 UEs generate random background traffic, while
the remaining 10–150 UEs try to download a 1000 MB file using
CASTLE or PFS-FAIR. For PFS-FAIR, we randomly distributed the
starting times of the UEs to prevent all UEs from downloading at
the same time. For CASTLE, Auto-tuning is compared to N-known,
which assumes that N (t) is known to each UE. Figure 16b shows the
average data rate achieved by users through Auto-tuning, N-known,
and PFS-FAIR over ten runs. Each dot represents the average value
of a single simulation run. Overall, CASTLE Auto-tuning and N-
known achieve similar average data rates for any number of CASTLE
UEs, outperforming PFS-FAIR. Thus, we empirically demonstrate
that Auto-tuning is a practical way to implement CASTLE.

5.5 Evaluation in a Real LTE Network
We finally evaluate CASTLE in a commercial LTE network. To an-
alyze the scheduling information of a commercial LTE eNodeB,
we first implement a LTE downlink control channel decoder by
modifying the OWL software [4]. By leveraging this decoder, we
report how many RBs are utilized in the commercial LTE cell while
we run CASTLE. Figure 17a compares the measured cell load to
the estimated load class of CASTLE over one day. There are some

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

426

 0

 20

 40

 60

 80

 100

 3am 6am 9am 12pm 3pm 6pm 9pm 12am

C
e
l
l

L
o
a
d

(
%
)

Time

(a) CASTLE’s cell load estimation vs. measured cell load

 0
 5

 10
 15
 20
 25
 30
 35
 40

 3am 6am 9am 12pm 3pm 6pm 9pm 12am

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

Time

(b) CASTLE file downloads and throughputs

Figure 17: Tested at the edge of a real AT&T cell operating on
739 MHz where the average RSRP was -110 dBm. (a) A blue
dot depicts one of four cell load classes estimated by CAS-
TLE, while gray dots are themeasured loads. (b) A single ver-
tical line depicts a file transfer done by CASTLE. Our CAS-
TLE application effectively leverages the time when there
was not much load in the early morning.

mismatches due to the different measurement points, but CASTLE’s
estimation is overall accurate. We finally installed a CASTLE ap-
plication on an AT&T phone that continuously downloaded a file
from the Internet on the same day of the week exactly one week
later (which had a similar traffic pattern to the cell load training
data). Figure 17b shows that the CASTLE application efficiently
utilized wireless resources by downloading the file when there was
not much load (1AM - 8AM), validating our approach.

6 DISCUSSION
Distributed vs. Centralized scheduling:Our objective is to min-
imize energy expenditure for each UE, which is equivalent to max-
imizing average per-UE throughput for active users subject to
application-specific constraints as discussed in §3.2. To achieve
this objective with a centralized algorithm, the BS should schedule
the UEs with maximum achievable throughput in each time slot
subject to the same constraints. This, however, requires an exten-
sive amount of control messages to be exchanged between UEs and
the BS, which needs further standardization efforts. Our distributed
scheduling lets users with high expected throughput participate in
channel access with a random backoff, approximately achieving
not only maximal per-UE throughput but also fairness by virtue of
backoff. The only common information required is an estimate of
the number of UEs, which we show the UEs can make in practice.
Accuracy of the ML algorithm: To mitigate computational over-
head, CASTLE allows each device to easily estimate the cellular load
from a lookup table in the SDK, where the ML algorithm has been
trained from multiple device types. However, to achieve higher
accuracy (albeit with little marginal improvement over our current
results), we can further divide the data for different ML models
based on different device types (i.e., vendors and models).

Coexistencewith existingmobile devices:Amobile device run-
ning CASTLE attempts the backoff operation only when it expects
that the estimated throughput is higher than the optimal threshold.
This behavior would protect the traffic of existing mobile devices
that do not adopt CASTLE by utilizing only unused resources. We
can further introduce the concept of maximum transfer time to
ensure fairness and avoid starvation of existing devices as in [6].
On the other hand, even in highly loaded situations, the CASTLE
devices with a small expected throughput A(t) can get allocated
resources from the eNodeB since a shorter deadline DDL leads to a
smaller threshold A∗ over time.
Use Cases: CASTLE can be easily integrated into existing applica-
tions as a separate SDK, though ideally it would be integrated at
the platform level to improve both spectral efficiency and battery
consumption on smart devices. Below we list some potential use
cases of CASTLE.

• Energy- and spectrum- efficient transmission of delay
tolerant traffic. Frequent firmware and ML model updates
on smart devices have a relatively large delay tolerance. Ex-
ploiting this tolerance by utilizing unused spectrum can mea-
surably help to support these devices’ growing bandwidth
needs. Moreover, mobile users’ background traffic such as
software updates, app downloads, emails, and social media
updates are also delay-tolerant, though the degrees of toler-
ance vary across users, applications, and device types [10].
CASTLE can consider this individual tolerance when run-
ning a fully distributed scheduling algorithm on each device.

• Scheduling for D2D communication. Device-to-device
(D2D) communication is emerging as a key enabler to facili-
tate the realization of machine-to-machine communications.
Even in D2D, both energy efficiency and quality of service
(QoS) are severely degraded by the strong intra-cell and inter-
cell interference caused by dense deployment and spectrum
reuse. CASTLE’s inference of the cell load and interference
can improve on a centralized interference mitigation method
in D2D settings [33].

• Transport protocols for exploiting extra bandwidthwith-
out causing network congestion. LEDBAT [24] is a trans-
port protocol that uses the extra bandwidth of the network
without causing network congestion. LEDBAT is used by
delay-tolerant applications and estimated to transport 13-
20% of Internet traffic. CASTLE’s theoretical framework can
be used to implement LEDBAT-like transport protocol for
cellular networks by providing an accurate estimation of
extra wireless resources.

• UE-triggered interference cancellation and handover
decisions. Existing approaches to interference cancellation
in cellular networks are mostly network-triggered, and the
existing handover decisions are mostly taken based on RSRP.
More accurate cell load information can improve these deci-
sions. CASTLE’s load and interference models in §3 can be
used to facilitate UE-triggered interference cancellation and
handover algorithms.

• New types of affordablemobile pricing.The rapid growth
in demand for mobile data forces Internet Service Providers
(ISPs) to over-provision network capacity, incurring costs

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

427

Category CASTLE LoadSense [6] CQIC [19] piStream [27] CLAW [28]

Modification UE (COTS) UE (w/ QxDM) UE & Server UE (w/ QxDM) UE (COTS) & Server
Load level Quaternary Binary Capacity estimation RB utilization RB utilization

Interference Inter-cell × × × ×

Scheduling Distributed (theory-driven) Distributed (CSMA-like) × × ×

API provision ⃝ × × × ×

Measurement period 1 sec 3 sec RTT 200 ms RTT
Application Delay-tolerant Background Bulk download Video streaming Web

Table 3: Comparison between CASTLE and other UE-side solutions to infer cellular network load.

to extend their infrastructure [10]. ISPs can offer incentives
(e.g., discounts or rewards) to users who run CASTLE on
their smart devices, as the use of CASTLE on many devices
can improve network utilization without hurting existing
customers, reducing the need for network over-provisioning.

7 RELATEDWORK
Passive load estimation. UE-based load estimation for commer-
cial cellular networks has been proposed by works that collect
PHY-layer information from the cellular modem [6, 19, 27, 28]. As
a pioneer, LoadSense [6] showed that RSRQ can be used for esti-
mating the cellular load. However, LoadSense was only evaluated
on 3G networks, where it had only 75% accuracy on average due to
making binary inferences based on a fixed throughput threshold
(e.g., 1.5 Mbps in 3G). In CQIC [19], the authors built a UDP-based
transport protocol in which the client estimates available capacity
based on a CQI-to-rate mapping. Similarly, piStream [27] proposed
to monitor more detailed PHY-layer information (i.e., per-subcarrier
energy level) to estimate available bandwidth over LTE for a new
rate adaptation scheme for mobile video streaming. Recently, Xie
et al. [28] proposed a new congestion control algorithm called
CLAW that harnesses limited PHY-layer statistics available from
LTE phones with an analytical model. These works, however, have
not considered inter-cell interference in their estimation models.
Active load estimation. There have been several research works
on maximizing cellular link utilization based on observed packet
transmissions, e.g., [9, 21, 25, 30–32]. PROTEUS [30] forecasts achiev-
able network performance in real time for an interactive mobile ap-
plication. Sprout [25] uses packet inter-arrival times to infer cellular
link bandwidth and further determines the number of packets that
can be transmitted as an end-to-end transport protocol. Verus [32]
adapts the sending rate following the delay-to-bandwidth mapping
learned during a training phase to react quickly to cellular capacity.
LinkForecast [31] takes a ML-based hybrid approach that leverages
both upper-layer (e.g., throughput) and lower-layer information
(e.g., RSRP/RSRQ) to predict link bandwidth in real time. To miti-
gate excessive queueing in cellular networks, ExLL [21] adjusts the
congestion window of the transport protocol for downlink traffic,
while QCUT [9] controls LTE firmware buffer occupancy for uplink
traffic.
Coordinated transmission. To improve channel utilization and
energy consumption, several works have studied a scheduling-
based approach that tries to distribute cellular traffic from multiple
clients or applications over time based on channel and load states.
Bartendr [23] performs an energy-aware scheduling based on pre-
diction of signal quality, but does not consider the load level. In

LoadSense [6], Peek-n-Sneak was presented as a distributed sched-
uling protocol for coordinated transmission from multiple UEs,
which is similar to CSMA for Wi-Fi networks. However, since Peek-
n-Sneak uses a simple random backoff based on a relatively long slot
duration of 3 seconds, it is likely to have sub-optimal performance
compared to CASTLE’s optimized backoff strategy and further may
deliver unfair service to UEs located in the cell edge, which may
not have high throughputs. CoSchd [26] is a mathematical frame-
work that considers both channel and load fluctuations for cellular
congestion alleviation. Even though its performance is close to
optimality, it requires each BS to update its congestion signal from
aggregated load, which is impractical.
Cellular network analysis. Huang et al. [13] discovered that ac-
tual bandwidth usage is less than 50% of the available bandwidth
due to both application behaviors and TCP parameter settings.
LTEye [16] is an open platform that can run on off-the-shelf soft-
ware radios. It analyzes the LTE radio performance by monitoring
the LTE PHY-layer and provides deep insights on these networks.
MobileInsight [18] analyzes operational cellular networks on smart-
phones. Despite its wide applicability, it does not estimate cellular
load in real time.

In summary, Table 3 compares UE-side solutions related to cellu-
lar load estimation.

8 CONCLUSION
In this paper, we have presented CASTLE, a fully distributed sched-
uling framework that can jointly optimize the spectral efficiency
of cellular networks and the battery consumption of smart devices.
For CASTLE’s validation, we built a prototype LTE system that
provides a full connectivity between application servers and mo-
bile devices and implemented CASTLE as a mobile SDK. Through
extensive experiments on our testbed and in AT&T’s LTE network,
we confirmed that CASTLE outperforms the existing protocol Peek-
n-Sneak and centralized PF scheduling, in terms of both spectral
efficiency and battery consumption. We expect that both cellular
operators and mobile users can benefit from CASTLE by easily
deploying its SDK.

ACKNOWLEDGMENTS
We would like to thank the MobiSys reviewers and our shepherd
Giovanni Pau for their feedback on earlier versions of this paper.
This work was partially supported by the NIST under Grant No.
70NANB17H186, the DARPA under contract No. HR001117C0048,
and the NSF under Grants CNS-1525435 and CNS-1738097.

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

428

REFERENCES
[1] 3GPP. 2016. LTE: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

layer; Measurements (Release 13). http://www.3gpp.org/dynareport/36214.htm.
(2016).

[2] 3GPP. 2016. LTE: Evolved Universal Terrestrial Radio Access (E-UTRA); Physi-
cal layer procedures (Release 13). http://www.3gpp.org/dynareport/36213.htm.
(2016).

[3] 3GPP RAN WG 3. 2016. 3GPP Standards for the Internet-of-Things. https:
//goo.gl/DAzMLT. (2016).

[4] Nicola Bui and Joerg Widmer. 2016. OWL: a Reliable Online Watcher for LTE
Control Channel Measurements. InACMAll Things Cellular (MobiComWorkshop).
ACM, 25–30.

[5] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. 2013. Downlink
Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey.
IEEE Communications Surveys Tutorials 15, 2 (2013), 678–700.

[6] Abhijnan Chakraborty, Vishnu Navda, Venkata N. Padmanabhan, and Ramachan-
dran Ramjee. 2013. Coordinating Cellular Background Transfers Using Loadsense.
In Proceedings of ACM MobiCom. ACM, 63–74.

[7] Cisco. 2017. Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2016-2021 White Paper. https://goo.gl/iUQZmQ. (2017).

[8] Forbes. 2017. 2017 Roundup Of Internet Of Things Forecasts. https://goo.gl/
bKLCJB. (2017).

[9] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata
Sen. 2016. Understanding On-device Bufferbloat for Cellular Upload. In Proceed-
ings of ACM IMC.

[10] Sangtae Ha, Soumya Sen, Carlee Joe-Wong, Youngbin Im, and Mung Chiang.
2012. Tube: time-dependent pricing for mobile data. ACM SIGCOMM Computer
Communication Review 42, 4 (2012), 247–258.

[11] W. Hu and G. Cao. 2015. Energy-aware video streaming on smartphones. In 2015
IEEE Conference on Computer Communications (INFOCOM).

[12] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen,
and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks. In Proceedings of ACM MobiSys.

[13] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. MorleyMao,
Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on Performance. In Proceedings
of ACM SIGCOMM.

[14] R. Jain, D. Chiu, and W. Hawe. 1984. A quantitative measure of fairness and
discrimination for resource allocation in shared systems. Tech. Rep. DEC-TR-301.
http://www1.cse.wustl.edu/âĹĳjain/papers/ftp/fairness.pdf

[15] Juni. 2017. Enterprise Small Cell JL620. http://www.juniglobal.com/product/
jl-620fdd-jlt-621tdd/. (2017).

[16] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE Radio
Analytics Made Easy and Accessible. In Proceedings of ACM SIGCOMM.

[17] Lee, Jihoon and Lee, Jinsung and Im, Youngbin and Dhawaskar Sathyanarayana,
Sandesh and Rahimzadeh, Parisa and Zhang, Xiaoxi and Hollingsworth, Max
and Joe-Wong, Carlee and Grunwald, Dirk and Ha, Sangtae. 2019. CASTLE SDK.
https://github.com/cu-pscr/CASTLE_LIBRARY.git/. (2019).

[18] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and Tao Wang.
2016. Mobileinsight: Extracting and Analyzing Cellular Network Information on
Smartphones. In Proceedings of ACM MobiCom.

[19] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker, Alex C. Snoeren, and Andreas
Terzis. 2015. CQIC: Revisiting Cross-Layer Congestion Control for Cellular
Networks. In Proceedings of ACM HotMobile. ACM, 45–50.

[20] NextEPC Inc. 2019. Open source implementation of LTE EPC. https://www.
nextepc.com/. (2019).

[21] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee, Sangtae Ha, and Kyunghan
Lee. 2018. ExLL: An Extremely Low-latency Congestion Control for Mobile
Cellular Networks. In Proceedings of ACM CoNEXT.

[22] Klaus Ingemann Pedersen, Troels Emil Kolding, Frank Frederiksen, István Zsolt
Kovács, Daniela Laselva, and Preben Elgaard Mogensen. 2009. An Overview of
Downlink Radio Resource Management for UTRAN Long-term Evolution. IEEE
Comm. Mag. 47, 7 (July 2009), 86–93.

[23] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad
Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan. 2010.
Bartendr: A Practical Approach to Energy-aware Cellular Data Scheduling. In
Proceedings of ACM MobiCom.

[24] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2012. Low Extra Delay
Background Transport (LEDBAT). RFC 6817. RFC Editor. http://www.rfc-editor.
org/rfc/rfc6817.txt http://www.rfc-editor.org/rfc/rfc6817.txt.

[25] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
Proceedings of USENIX NSDI.

[26] H. Wu, X. Lin, X. Liu, K. Tan, and Y. Zhang. 2016. CoSchd: Coordinated Sched-
uling With Channel and Load Awareness for Alleviating Cellular Congestion.
IEEE/ACM Transactions on Networking 24, 5 (October 2016), 2579–2592.

[27] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015. piStream:
Physical Layer Informed Adaptive Video Streaming over LTE. In Proceedings of
ACM MobiCom.

[28] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web
Loading Using Cellular Link Information. In Proceedings of ACM MobiSys.

[29] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin. 2017. Understanding Mobile Traffic
Patterns of Large Scale Cellular Towers in Urban Environment. IEEE/ACM
Transactions on Networking 25, 2 (April 2017), 1147–1161.

[30] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. 2013. PROTEUS: Net-
work Performance Forecast for Real-time, Interactive Mobile Applications. In
Proceedings of ACM MobiSys.

[31] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei. 2017. LinkForecast: Cellu-
lar Link Bandwidth Prediction in LTE Networks. IEEE Transactions on Mobile
Computing Preprint (2017).

[32] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In Proceedings of ACM SIGCOMM.

[33] Z. Zhou, M. Dong, K. Ota, G. Wang, and L. T. Yang. 2016. Energy-Efficient
Resource Allocation for D2D Communications Underlaying Cloud-RAN-Based
LTE-A Networks. IEEE Internet of Things 3, 3 (June 2016), 428–438.

Session 8: Waiting for 7G MobiSys ’19, June 17–21, 2019, Seoul, Korea

429

http://www.3gpp.org/dynareport/36214.htm
http://www.3gpp.org/dynareport/36213.htm
https://goo.gl/DAzMLT
https://goo.gl/DAzMLT
https://goo.gl/iUQZmQ
https://goo.gl/bKLCJB
https://goo.gl/bKLCJB
http://www1.cse.wustl.edu/∼jain/papers/ftp/fairness.pdf
http://www.juniglobal.com/product/jl-620fdd-jlt-621tdd/
http://www.juniglobal.com/product/jl-620fdd-jlt-621tdd/
https://github.com/cu-pscr/CASTLE_LIBRARY.git/
https://www.nextepc.com/
https://www.nextepc.com/
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt

	Abstract
	1 Introduction
	2 CASTLE Design
	2.1 Design Challenges
	2.2 Architecture

	3 System Model
	3.1 CASTLE's Scheduling
	3.2 Problem Formulation
	3.3 Calculation of A*n and Rb
	3.4 Estimation of An(t)

	4 Implementation
	5 Evaluation
	5.1 Accuracy of Load Estimation
	5.2 Effect of Location
	5.3 Effect of Mobility
	5.4 Auto-tuning of N(t)
	5.5 Evaluation in a Real LTE Network

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

