
zTT: Learning-based DVFS with Zero Thermal Throttling for
Mobile Devices

Seyeon Kim

KAIST

seyeon625@kaist.ac.kr

Kyungmin Bin

Seoul National University

kmbin@snu.ac.kr

Sangtae Ha

University of Colorado Boulder

sangtae.ha@colorado.edu

Kyunghan Lee

Seoul National University

kyunghanlee@snu.ac.kr

Song Chong

KAIST

songchong@kaist.edu

ABSTRACT
DVFS (dynamic voltage and frequency scaling) is a system-level

technique that adjusts voltage and frequency levels of CPU/GPU at

runtime to balance energy efficiency and high performance. DVFS

has been studied for many years, but it is considered still chal-

lenging to realize a DVFS that performs ideally for mobile devices

for two main reasons: i) an optimal power budget distribution be-

tween CPU and GPU in a power-constrained platform can only be

defined by the application performance, but conventional DVFS

implementations are mostly application-agnostic; ii) mobile plat-

forms experience dynamic thermal environments for many reasons

such as mobility and holding methods, but conventional implemen-

tations are not adaptive enough to such environmental changes.

In this work, we propose a deep reinforcement learning-based fre-

quency scaling technique, zTT. zTT learns thermal environmental

characteristics and jointly scales CPU and GPU frequencies to max-

imize the application performance in an energy-efficient manner

while achieving zero thermal throttling. Our evaluations for zTT

implemented on Google Pixel 3a and NVIDIA JETSON TX2 plat-

form with various applications show that zTT can adapt quickly to

changing thermal environments, consistently resulting in high ap-

plication performance with energy efficiency. In a high-temperature

environment where a rendering application with the default mobile

DVFS fails to keep producing more than a target frame rate, zTT

successfully manages to do so even with 23.9% less average power

consumption.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Software and its engineering →
Power management.

KEYWORDS
Mobile devices; DVFS; Deep reinforcement learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00

https://doi.org/10.1145/3458864.3468161

ACM Reference Format:
Seyeon Kim, Kyungmin Bin, Sangtae Ha, Kyunghan Lee, and Song Chong.

2021. zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile

Devices. In The 19th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’21), June 24-July 2, 2021, Virtual,WI, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3458864.3468161

1 INTRODUCTION
With the advent of mobile processors integrating CPU and GPU,

high-performance tasks such as deep learning, gaming and image

processing are running on mobile devices. To fully exploit CPU

and GPU’s capability on mobile devices, we need to utilize their

processing capability as much as possible. However, it is challenging

due to the nature of mobile devices whose users are sensitive to

battery consumption and device temperature. Many researchers

have studied techniques enabling energy-efficient operations in

mobile processors, mostly at managing the temperature and power

consumption below predefined thresholds.

DVFS (Dynamic Voltage and Frequency Scaling) is a technique

that reduces heat generation and power consumption from the cir-

cuit by adjusting CPU or GPU voltage-frequency levels at runtime.

To best utilize its benefits, many DVFS techniques [6, 9, 17, 20, 21,

24, 29, 33, 52] have been developed for mobile processors. Still, it is

known challenging to implement a DVFS that performs ideally for

mobile devices. There exist several reasons behind this difficulty.

First, conventional DVFS implementations stay mostly in the

operating system kernel, thus becoming application-agnostic. How-

ever, applications and their demands can only define the optimal

power distribution between CPU and GPU in a power-constrained

platform. For instance, it is more efficient to allocate more resources

to GPU than CPU when processing graphic tasks. When running

mobile games, since CPU and GPU demands vary from game to

game, their power distribution needs to change accordingly. Allo-

cating more power than is necessary to either CPU or GPU will

unnecessarily increase the power consumption and the system

temperature. Therefore, to provide the best performance to mobile

devices, it is essential to distribute the power budget judiciously

among the processors by incorporating the actual performance of

applications (i.e., application QoE).

Second, most DVFS implementations are not free from over-

heating problem [39, 44], especially on mobile devices. As mobile

devices do not have active cooling methods such as fan control,

if the device temperature goes above the level that TDP (thermal

design power) can handle, thermal throttling occurs, which sig-

nificantly degrades application performance. Figure 1 shows an

41

https://doi.org/10.1145/3458864.3468161
https://doi.org/10.1145/3458864.3468161
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current


MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

Figure 1: CPU temperature and frame rate while rendering
a video. When overheated, CPU significantly lowers clock
frequency by thermal throttling.

example of thermal throttling that happens to reduce heat gen-

eration when the temperature goes beyond a predefined thresh-

old. To avoid critical frame drops, it is necessary for the device to

predict and manage its temperature in advance. However, unlike

desktops and servers, there is no one-size-fits-all approach since

mobile devices experience complex thermal environments for sev-

eral reasons, such as user mobility, holding methods, and external

temperature [22]. It is also not straightforward to determine the

impact of internal heat generation from processors to the device

temperature as CPU and GPU are thermally coupled [31, 37]. As

a result, most DVFS techniques [32, 36, 40, 42, 48] relying on a

predefined temperature prediction model would not work properly

for mobile devices. Furthermore, recent supervised learning-based

approaches [8, 11, 45, 53] only give the adaptation ability to previ-

ously trained environments. Thus, their thermal management in

mobile settings has no performance guarantee. To overcome the

problems mentioned above, a new design of DVFS that continu-

ously learns the application performance as well as environmental

changes and adapts to those changes is required. In this paper, we

introduce zTT (zero thermal throttling), a deep reinforcement learn-

ing (DRL)-based DVFS that quickly learns and adapts to application

performance and environmental changes.

To realize zTT, we propose three techniques listed below based

on our experimental observations on mobile platforms. First, we

design a new DVFS framework that adjusts CPU/GPU voltage-

frequency levels and learns the thermal throttling boundaries with

the cooling capability and the temperature trend in a given environ-

ment. Second, we use DRL to handle the high-dimensional action

and state spaces for learning. These spaces include CPU/GPU clock

frequencies, temperatures, and power consumption levels. Third,

we minimize the adaptation time to an environmental change, thus

improving the convergence speed of DRL by leveraging the ideas

from transfer learning and using sample copies from the past data.

We evaluate zTT in various mobile applications, including deep

learning applications, on two mobile platforms, NVIDIA JETSON

TX2 and Google Pixel 3a. From the experiments, we verify that

zTT achieves higher performance in frames per second (FPS) with

lower power consumption compared to state-of-the-art DVFS imple-

mentations. We also verify that zTT successfully prevents thermal

throttling even in dynamic environments with abrupt temperature

changes.

The main contributions of this paper are four-fold:

• We analyze how the performance and temperature charac-

teristics of a mobile device change with applications and

environmental changes through experiments and advocate

the potential of learning-based DVFS.

• We formulate an optimization problem for a mobile device’s

power and thermal management as an MDP (Markov deci-

sion problem) that can handle the trade-off between applica-

tion performance and power consumption with constraints

on temperature limit.

• We propose zTT, a new practical DRL-based DVFS mecha-

nism that adapts to applications and environments without

any prior model or training and adapts quickly with histori-

cal data via transfer learning.

• We implement zTT on two mobile platforms, NVIDIA JET-

SON TX2 and Google Pixel 3a, and experimentally validate

that zTT maximizes QoE of an application while adapting

to environmental changes.

2 BACKGROUND
2.1 CPU and GPU DVFS Techniques
The power consumption of a processor, including CPU or GPU,

is determined by its utilization and voltage-frequency (VF) level.

So adjusting the VF level according to the workload makes the

use of resources more efficient. DVFS is a well-known technique

that dynamically adjusts the VF level of a processor for energy

efficiency and thermal management. The VF scaling algorithm of

a DVFS implementation, namely governor, is mainly built by the

processor manufacturer and is controlled by the operating system.

For instance, ondemand and interactive governors [7], which

are default governors in Linux, adjust CPU frequency based on

the predefined CPU utilization levels. Linux kernel also utilizes

simple_ondemand governor for GPU, which is a simpler version of

ondemand. The existing governors are known to ensure stable per-

formance and reduce power consumption, but two limitations hin-

der them from being ideal. First, they do not take the performance

of applications into account. Therefore, conventional utilization-

based controls are not guaranteed to provide optimal performance

to applications. Second, given a limited power budget, having sep-

arate governors for CPU and GPU make it hard to jointly utilize

resources more efficiently.

2.2 Thermal Issues on Mobile Devices
As the capabilities of mobile devices evolve, mobile processors

become more powerful and denser within small package spaces.

The heat generated in such a compact area is tough to man-

age, especially when performing heavy computations. Furthermore,

the introduction of 5G networks using high-frequency, high-speed

mmWave puts the devices at a higher risk of overheating. Thermal

management ensuring no severe performance degradation in such

a situation is becoming more critical. Using a fan for heat man-

agement is very common in most computing platforms, but most

mobile devices use heat sinks (or heat pipes) for heat dissipation,

given the limited thin space. Unfortunately, even with heat sinks

of proper sizes, mobile devices are not free from overheating. The

mobile device’s temperature characteristics are affected by various

factors such as environmental temperature, holding method, protec-

tive case, and applications [22], thermal coupling among processors

and battery [50] and the material of the surface in contact. Despite

42



zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) Video rendering (b) YOLO

Figure 2: Average power consumption and frame rate for
video rendering and image detection application (YOLO
v3). Two default CPU DVFS techniques (interactive,
performance) and optimal frequency scaling are used for
comparison.

substantial research efforts on the thermal management of mobile

devices [5, 30], these factors leave the problem of overheating in mo-

bile devices unsolved. As a result, thermal throttling, a compulsory

thermal management technique, is still widely used. It drastically

reduces the processor clock frequency when the processor tem-

perature rises above a certain threshold, leading to an immediate

temperature drop. Thermal throttling is powerful but far from being

ideal because it hurts application performance and user experience.

Implementing a DVFS that can produce maximal application per-

formance while persistently keeping the device temperature within

its operational range is desirable.

3 OBSERVATION
We conducted preliminary measurements to understand the ineffi-

ciency of existing DVFS schemes and present how the performance

and temperature characteristics change with the application and

environment. All experiments were conducted on NVIDIA JETSON

TX2 running on Linux 16.04 (kernel 4.4) and Google Pixel 3a run-

ning on Android OS 9.0 (kernel 4.9). The measurements show that

there is an enormous opportunity to improve energy efficiency

while preventing thermal throttling through performance and tem-

perature prediction by learning their characteristics.

3.1 Inefficiency of Existing DVFS Schemes
Application performance on mobile devices depends heavily on

both CPU and GPU and how their clock frequencies are controlled.

In the early stage of mobile platforms, the CPU had to handle

most operations while GPU was only assigned for graphics-related

tasks. However, general-purpose GPU (GPGPU) enabled mobile

devices to run applications requiring heavy computation such as

deep learning, mobile game, and real-time image processing with

GPU. In these applications, task assignment to CPU and GPU is a

black box to the software developers even though it is critical to

coordinate CPU and GPU for optimal performance.

Figure 2 shows the average FPS and total power consumption of

JETSON TX2 while rendering a video with H.264 codec and YOLO

v3
1
[34] with different DVFS governors. We use simple_ondemand

governor for GPU and three CPU frequency scaling techniques.

1
A deep-learning based object detection application

(a) Video rendering (b) YOLO

Figure 3: CPU temperatures of JETSON TX2 with differ-
ent CPU clock frequencies. CPU temperature shows a sig-
nificant difference by applications: a) video rendering with
H.264 codec and b) image detection application YOLO v3.

The Interactive and Performance governors are default gover-
nors in Linux. Optimal is a virtual governor simulated to improve

energy efficiency based on our measurements. For video render-

ing, Performance sets the CPU clock at the maximum, but it gets

little frame rate improvement compared to Interactive, at the
cost of 21.3% more power consumption. Optimal, on the other

hand, boosts the GPU clock slightly and achieves even higher

frame rate compared to Performance while consuming power

similar to Interactive. For running YOLO, both interactive
and performance governors have similar power consumption and

frame rates while the optimal governor consumes 19.5% less power

for the same frame rate level by properly lowering the CPU clock.

This gap of the existing DVFS techniques comes from the fact that

they do not take the performance characteristics of applications

into account, and DVFS governors for CPU and GPU do not op-

erate collaboratively. Our observations imply that if it can predict

which resource would be the bottleneck for the application perfor-

mance, it would be possible to control CPU and GPU much more

energy-efficiently.

3.2 Thermal Characteristics
Several factors determine the temperature of a processor. First, the

higher the heat generation of the mobile processor, the higher the

overall temperature. Figure 3 (a) shows the CPU temperature of

JETSON TX2 with different CPU clock frequencies while render-

ing a video. Higher frequencies consume more power, resulting in

generating more heat. Even with the same clock frequency setting,

the power consumption varies depending on processor utilization,

implying that temperature characteristics can vary from applica-

tion to application. Figure 3 (b) shows that even with the same

clock frequency, the YOLO application demanding higher processor

utilization makes the device’s temperature higher.

Second, processor temperature is affected by thermal coupling

between mobile processors such as big.Little CPU cores and GPU

cores. In the case of mobile devices such as smartphones, the heat

generated by one processor significantly affects the others because

mobile processors are densely packed in a compact space. So it is

common for them to share a heat sink. Figure 4 shows the steady-

state temperature of two mobile devices with different GPU clock

frequencies with a fixed CPU frequency. Figure 4 shows evidence

that the mobile CPU and GPU are thermally coupled. This coupling

43



MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

Figure 4: CPU temperature increases when the GPU clock
frequency increases due toCPU-GPU thermal coupling even
if CPU clock frequency remains at the same level.

can be loose or tight, depending on the type and structure of the

mobile devices.

Finally, the thermal characteristics of mobile devices are sensi-

tive to environmental changes. To quantitatively study the effect of

the environment on the device temperature, we experimented with

applications running on the Pixel 3a’s CPU/GPU under various

settings (Figure 5). As shown in Figure 5 (a), the temperature can be

managed reasonably in a low-temperature environment, but man-

aging the temperature becomes much more difficult in situations

where the phone is in a protective case or in a pocket (Figures 5 (b)

and (c)). Figure 5 (d) shows that the heat generated from charging

also affects CPU temperature. In particular, Skype and video record-

ing cause thermal throttling(>65
◦
C). As summarized in Figure 5

(e), the temperature characteristics can vary significantly by appli-

cations and by environments, and overheating indeed happens in

real-life situations.

4 zTT DESIGN
We present the design of zTT, an effective DRL-based DVFS system

that quickly learns and adapts to application performance and envi-

ronmental changes without incurring thermal throttling. Figure 6

illustrates the purpose and impact of learning in zTT. The lattice

points within the total power budget curve for a mobile device
2

represent all available CPU/GPU power consumption combinations.

The graph shows that the better the cooling, the more combinations

are usable, thus providing better performance for an application. To

find out the best possible combination at the moment, zTT learns

the environment and application performance. Environment learn-

ing is to learn about environmental changes that frequently happen

over time and by device mobility. Even with the same CPU/GPU

clock frequency combinations, different environments can lead to

varying temperatures of mobile processors. Therefore, learning

from the environment means predicting how the temperature will

change in the current situation when using a given CPU/GPU clock

frequency combination. Application learning is to learn applica-

tion performance characteristics per application over CPU/GPU

resource requirements. Performance lines from two different ap-

plications (i.e., CPU-intensive and GPU-intensive applications) are

conceptually drawn in Figure 6, and these are what zTT learns.

2
The total power budget curve of a mobile processor is defined by CPU and GPU

power consumption points from which no more increase can be allowed by TDP

(thermal design power) of the mobile device. This curve is nonlinear in practice as in

Figure 6.

(a) Indoor (25 ◦
C) (b) In a protective case

(c) In a pocket (d) Wireless charging

(e) Application-specific steady-state temperature for four envi-
ronments (a), (b), (c) and (d).

Figure 5: CPU temperature according to environment and
application when the clock frequency of CPU/GPU is fixed.
The red lines indicate the threshold of thermal throttling.

To realize zTT that can achieve both learning goals in a single

framework, we below present our step-by-step design for our opti-

mization problem formulation, its transformation to MDP, and its

transformation to model-free RL and DRL in detail.

4.1 Problem Formulation
We start by formulating our optimization problem that incorporates

the observations in Section 3.

We define a utility function 𝑈 (𝑡) to represent the application

performance as user QoE at time 𝑡 . This utility function can be

interpreted differently by users and by applications [51]. Although

there are no golden rules for defining user QoE, many existing

studies define the QoE as guaranteeing application performance

beyond a certain level (e.g., required frame rates for video/gaming

applications) [9, 13, 38]. We also use 𝑈 (𝑡) for video and gaming

applications to ensure their frame rates above a target frame rate

at time 𝑡 . The power consumption 𝑃 (𝑡) is defined by the total

instantaneous power consumption from CPU and GPU at time

𝑡 . Then, the problem of maximizing 𝑈 (𝑡) and minimizing 𝑃 (𝑡)
on average for 𝑇 while guaranteeing to avoid thermal throttling

becomes as follows:

(P0): max

𝜋

1

𝑇

𝑇∑
𝑡=1

{𝑈 (𝑡) + 𝛽

𝑃 (𝑡) } (1)

s.t. 𝑇𝐶 (𝑡) ≤ 𝑇𝐶,𝑡ℎ,∀𝑡 (2)

𝑇𝐺 (𝑡) ≤ 𝑇𝐺,𝑡ℎ,∀𝑡 (3)

In Eq. (1), 𝜋 denotes the set of available policies controlling the

CPU/GPU frequency combinations from 𝑡 = 1 to 𝑡 = 𝑇 , (𝑓𝐶 (1),

44



zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Figure 6: The purpose of application and environment learn-
ing. The range of CPU/GPU clocks expands in a cooler envi-
ronment within the total power budget.

𝑓𝐺 (1), ... , 𝑓𝐶 (𝑇 ), 𝑓𝐺 (𝑇 )), where 𝑓𝐶 (𝑡) and 𝑓𝐺 (𝑡) denote the con-

figured frequency of CPU and GPU at time 𝑡 , respectively. 𝛽 is a

trade-off weight. For instance, a user who prefers to maximize appli-

cation performance regardless of the power consumption may set 𝛽

closely to 0. A larger 𝛽 gives more weight to the power consumption.

Constraints (2) and (3) are hard-bounds for zero thermal throttling

that enforces the CPU and GPU temperatures, 𝑇𝐶 (𝑡) and 𝑇𝐺 (𝑡) to
be within their threshold temperatures, 𝑇𝐶,𝑡ℎ (𝑡) and 𝑇𝐺,𝑡ℎ (𝑡). The
threshold temperatures depend on the chipset specifications, and

getting overheated beyond these temperatures may damage the

chipsets.

MDP Transformation. The problem P0 can be converted to MDP

M0 B< 𝑆,𝐴, 𝑅, 𝑝,𝛾 > consisting of state, action, reward, transi-

tion probability, and discount factor as in Table 1, and its Bellman

optimality equation follows Eq. (4).

Table 1: State, Action and Reward for zTT’s MDP, M0

𝑠 (𝑡) ∈ 𝑆 𝑓𝐶 (𝑡), 𝑓𝐺 (𝑡),𝑇𝐶 (𝑡),𝑇𝐺 (𝑡), 𝑃𝐶 (𝑡), 𝑃𝐺 (𝑡), 𝑥 (𝑡)
𝑎(𝑡) ∈ 𝐴 𝑓𝐶 (𝑡), 𝑓𝐺 (𝑡)
𝑟 (𝑡) ∈ 𝑅 𝑈 (𝑡) + 𝛽

𝑃 (𝑡 ) +𝑊 (𝑡)

𝑉 𝜋∗
(𝑠) = max

𝑎
{𝑅(𝑠, 𝑎) + 𝛾

∑
𝑠′

𝑃 (𝑠 ′ |𝑠, 𝑎)𝑉 𝜋∗
(𝑠 ′) (4)

The objective of M0 is to find an optimal policy 𝜋∗ satisfying Eq. (4),
where function𝑉 𝜋∗ (𝑠) is the value function of state 𝑠 for an optimal

policy 𝜋∗. In order to handle the constraints, Eq. (2) and (3), of P0,
a reward compensation function,𝑊 (𝑡), is added in the reward 𝑅.

Setting𝑊 (𝑡) = 0 makes the optimal solution of M0 the same as

P0 for 𝛾 = 1. We will discuss our novel reward design with𝑊 (𝑡)
in the next Section 4.2.

Transformation to Model-free RL. Solving M0 is challenging

because it is practically impossible to precisely model the transi-

tions between temperatures, with the configured CPU and GPU

frequencies, and the MDP actions of M0. Thus by replacing value

function𝑉 (𝑠) with Q-function𝑄 (𝑠, 𝑎), we find the optimal solution

of M0 through solving M1:

(M1): max

𝜋
E𝜋 [𝑄𝜋 (𝑠, 𝑎)] (5)

Q-function in M1 is defined by the sum of expected reward for

each action taken at a state. Q-learning is a popular model-free

RL algorithm that does not require probabilistic modeling for state

transitions, which is essential for an MDP. Although Q-learning

is known to find an optimal policy providing a series of actions

maximizing the expected reward, it has a known limitation in its

size of the state and action spaces such as an infinite number of

states inM0 due to having continuous values (e.g., power consump-

tion, temperature). Deep Q-Network (DQN) [25], a popular DRL

algorithm, approximates Q-function with DNN to address the state

and action size issue of Q-learning. To exploit the idea of DQN, we

customize our state and actions spaces and reward function forM0.
We detail this in section 4.2.

Furthermore, to deal with practical scenarios in which the envi-

ronment and application change frequently, we provide adaptability

to zTT by adopting recent advances in DQN toM1 in a customized

manner. We detail this in section 4.3.

4.2 State, Action and Reward Design
zTT solvingM1 with DQN can adapt to application performance

and environmental changes while conventional RL methods will

not work due to unique constraints such as hard bounds on thermal

limits. Below we describe how we customize DQN for zTT by

redefining state, action, and reward for M1.

4.2.1 State.
Our new states are defined by a tuple containing seven parame-

ters: (𝑓𝐶 (𝑡), 𝑓𝐺 (𝑡),𝑇𝐶 (𝑡),𝑇𝐺 (𝑡), 𝑃𝐶 (𝑡), 𝑃𝐺 (𝑡), 𝑥 (𝑡)). Targeting video
and gaming applications, we observe the frame rate at time 𝑡 , 𝑥 (𝑡),
and the power consumption of CPU/GPU at time 𝑡 , 𝑃𝐶 (𝑡) and 𝑃𝐺 (𝑡),
to manage the total power consumption 𝑃 (𝑡) = 𝑃𝐶 (𝑡) + 𝑃𝐺 (𝑡). To
keep an eye on overheating, temperatures of CPU and GPU, 𝑇𝐶 (𝑡)
and 𝑇𝐺 (𝑡), are measured at every 𝑡 . We also monitor the clock fre-

quency of CPU/GPU, 𝑓𝐶 (𝑡) and 𝑓𝐺 (𝑡), to help approximate resource

usage.

4.2.2 Action.
We define the set of actions to be the clock frequency of CPU and

GPU. Within the threshold temperatures of CPU and GPU, actions

are taken using a modified 𝜖-greedy method. With probability 𝜖 ,

zTT’s action does exploration, and with probability 1 − 𝜖 , it does

exploitation. When the temperature goes close to the threshold,

cool-down action, detailed below, is used to lower the temperature

and prevent overheating.

Exploration and exploitation. We let 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 take uniform

random actions over the entire clock frequency range. At the begin-

ning of the training, the sample collection phase kicks in for batch

training, so the only 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is taken to collect samples. After

minimum required samples are collected, 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is performed

much less, with the probability of 𝜖 . In the exploitation phase, an

action 𝑎(𝑡) that maximizes 𝑄 (𝑠 (𝑡), 𝑎(𝑡)) is selected given state 𝑠 (𝑡)
at every 𝑡 .

Cool-down action. In conventional 𝜖-greedy, the exploration is

done without considering its result. Therefore, an adversarial action

that results in a negative reward can be chosen. This adversarial

action is considered important as it expands sampling for training,

but it can cause thermal throttling in our case. To avoid such critical

happenings, we let zTT randomly select one of the clock frequen-

cies lower than the current clock frequency when approaching the

45



MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

(a) Reward function 𝑈 by the
frame rate of an application

(b) Reward function 𝑊 by pro-
cessor temperature

Figure 7: Reward function examplewhen the target FPS is 30
and threshold temperature is 50 ◦

C while rendering a video.
User QoE is 1when the target frame rate is achieved. Reward
by temperature becomes negative if it exceeds the threshold
temperature.

threshold temperature, ensuring that the device stays under the

throttling threshold. This approach prevents drastic performance

degradation from thermal throttling, thus keeping the application

performance much more stable during adaptation. When the tem-

perature decreases through the cool-down action, the entire range

of clock frequencies is searched through exploration. Note that

cooling down with a single fixed low clock in thermal throttling re-

sults in severe sample imbalance, leading to inefficiency compared

to our approach.

4.2.3 Reward.
We propose a dedicated reward design for zTT, which introduces

𝑊 (𝑡) interacting with 𝑈 (𝑡) and 𝑃 (𝑡) as in Table 1. In cases where

frame rates are critical for the application QoE (e.g., video and

gaming apps), zTT defines the utility function as in Eq. 6. Eq. 6 is

designed to have a larger utility for a better frame rate 𝑥 (𝑡) until it
gets saturated by an application-specific target frame rate, 𝑋𝑡 . For

video rendering, Figure 7 (a) shows that if the perceived FPS exceeds

𝑋𝑡 (e.g., 30 in this example), we assume that the user satisfaction

would not improve further
3
while consuming more power.

𝑈 (𝑡) =
{

1, if 𝑥 (𝑡) ≥ 𝑋𝑡
𝑥 (𝑡 )
𝑋𝑡

, otherwise
(6)

Regarding the temperature, zTT must learn how to predict whether

the temperature of the next moment would exceed the threshold or

not. Therefore, with𝑊 (𝑡), we design a negative reward for those

actions that result in temperature threshold violations. In Figure 7

(b), we exemplify𝑊 (𝑡) given that the threshold temperature is

50
◦
C. When the temperature is below the threshold,𝑊 (𝑡) gives a

constant positive reward, while𝑊 (𝑡) is given a sharp drop in its

reward toward a non-negligible negative value near the threshold

temperature. Eq. 7 shows this design for CPU, which can be applied

to GPU as well. zTT evaluates𝑊 (𝑡) = 𝑊𝐶 (𝑡) +𝑊𝐺 (𝑡). We use

𝑡𝑎𝑛ℎ(·) instead of a step function to reflect the small thermal budget

near the threshold.

𝑊𝐶 (𝑡) =
{
𝜆 · 𝑡𝑎𝑛ℎ(𝑇𝐶,𝑡ℎ −𝑇𝐶 (𝑡)), if 𝑇𝐶 (𝑡)<𝑇𝐶,𝑡ℎ

−10 · 𝜆, otherwise 4
(7)

3
Using𝑈 (𝑡 ) increasing gradually beyond 𝑋𝑡 in our framework is also possible.

4
We set 𝜆 = 0.2 through our experiments.

Algorithm 1: zTT Algorithm

Constants: 𝑇𝐶,𝑡ℎ,𝑇𝐺,𝑡ℎ, 𝑋𝑡

Initialize: Replay memory 𝐷 to capacity |𝐷 |, Neural
network 𝜃 , Target network 𝜃− = 𝜃 and 𝜖 = 1

Initialize: Q-function with 𝜃

1 𝑠 (1) = (𝑓𝐶 (1), 𝑓𝐺 (1),𝑇𝐶 (1),𝑇𝐺 (1), 𝑃𝐶 (1), 𝑃𝐺 (1), 𝑥 (1))
2 for 𝑡 = 1, 2, ...,𝑇 do

/* 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 method or cool-down actions */

3 Get action 𝑎(𝑡)
4 Observe 𝑠 (𝑡 + 1)
5 Calculate reward 𝑟 (𝑡)
6 Append sample (𝑠 (𝑡), 𝑎(𝑡), 𝑟 (𝑡), 𝑠 (𝑡 + 1)) in 𝐷

7 if 𝑟 (𝑡) ≤ 0 or 𝑟 (𝑡) ≥ 1 then
/* Additional Copy of sample to highlight it */

8 Append copy (𝑠 (𝑡), 𝑎(𝑡), 𝑟 (𝑡), 𝑠 (𝑡 + 1)) in 𝐷

/* Batch-training with the target network technique */

9 if more than |𝑀 | samples are collected then
10 Sample random minibatch𝑀 of (𝑠, 𝑎, 𝑟, 𝑠 ′) from 𝐷

/* Locking 𝜃 parameter during the updates. */

11 for (𝑠, 𝑎, 𝑟, 𝑠) ∈ 𝑀 do
12 Set 𝑦 = 𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠 ′, 𝑎′;𝜃−)
13 Perform gradient descent on∑

(𝑠,𝑎,𝑠′,𝑦) ∈𝑀 (𝑦 −𝑄 (𝑠, 𝑎;𝜃 ))2 with respect to 𝜃

14 Every 𝐶 steps, 𝜃− = 𝜃

15 Every 𝑘 steps, reset learning rate

16 𝜖 decays

4.3 Providing Adaptability to DQN
States and actions were carefully defined to solve our M1 with

DQN as in Section 4.2. We design the DQN for zTT to be a fully-

connected neural network. At the beginning of learning, zTT takes

random actions and stores (𝑠 (𝑡), 𝑎(𝑡), 𝑟 (𝑡), 𝑠 (𝑡 + 1)) samples in its

replay memory. When the minimum required samples are collected,

it performs batch training and approximates its Q-function. To

improve the stability and convergence of DQN, we adopt transfer

learning and use sample copies from historical data. In DQN, during

the updates of the RL equations, the Q-function of our interest

(i.e., target function) can change due to the changes made to the

underlying DNN, making the training difficult. The target network

technique locks the target function parameters during the updates

and replaces them with the latest network’s values every few steps.

To improve the diversity of samples, the probability of explo-

ration, 𝜖 , starts from 1 and decreases gradually over time. By doing

so, zTT learns about environments and applications, and it gets

the ability to predict thermal headroom (i.e., thermal margin to the

threshold temperature). However, this does not sufficiently provide

the adaptation ability to zTT because a DQN algorithm is originally

designed to solve MDP, where its model does not change over time.

That is, the algorithm assumes that the transition probabilities be-

tween states do not change in the MDP. In our problem M1, the
transition probability of MDP can change as environments and

applications vary. To overcome this limit, we adopt two more tech-

niques to implement the learning in zTT that enables adaptation to

varying environments or applications.

46



zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) NVIDIA JETSON TX2 (b) Google Pixel 3a

Figure 8: The testbed setups for NVIDIA JETSON TX2 and
Pixel 3a with a Monsoon power monitor.

Transfer learning.Wedevelop a transfer learning-based approach
5

for our DQN algorithm. The idea behind this is that even if the

environment changes, only a few of the entire neural network pa-

rameters will change because the structure of the model might be

substantially similar. We verify in Section 6 that our DQN-based

algorithm works reasonably well in changing environments with

mostly the same neural network parameters, including the same

input and output layers, and small updated parameters.

Using sample copies for faster convergence. When the en-

vironment changes, the mobile device’s thermal characteristics

change accordingly: there may exist two different situations. First,

if the situation changes to worse heat dissipation, the thermal bud-

get may suffer from satisfying QoE for the application. Second, the

situation can change to benefit from better cooling. In this case,

applications are given the opportunities to exploit higher clock fre-

quencies, thus better QoE probabilistically. Samples collected from

these two types of environmental changes should be emphasized in

training and adaptation so that those changes can later be adopted

more quickly. To do so, we append a set of additional copies of those

unique samples to the replay memory to highlight them during

the batch training. Additionally, to prevent the learning rate from

stagnating because the gradient descent algorithm decreases it over

time for convergence, we reset the learning rate periodically. Thus,

even when the environment changes, it is possible to prevent being

trapped in the previous environment’s optimal point. These tech-

niques increase the sample efficiency in the event of environmental

changes, leading to quicker training and better adaptation ability.

How zTT works is detailed in Algorithm 1.

5 IMPLEMENTATION
We implement zTT with Python 3.5 and Keras 2.2 [16] on Google

Pixel 3a and NVIDIA JETSON TX2 (Figure 8). zTT controls the CPU

and GPU clocks of these devices whose specifications are shown

in Table 2. The CPU of JETSON TX2 has a clock frequency range

of 0.3 GHz to 2.0 GHz. The big and LITTLE CPU of Pixel 3a has a

range of 0.3GHz to 1.9GHz and 0.3GHz to 1.7GHz, respectively.

Figure 9 shows an overview of zTT implementation. zTT agent

runs separately from other mobile applications. DQN in zTT agent

takes action based on our modified 𝜖-greedy method or do explo-

ration to cool-down as described in Section 4.2.2. The agent then

calculates the reward, collects samples of the observed state, and

puts them into the replay memory. After that, DQN is trained with

5
Transfer learning is a technique that improves learning a predictive function for a

new sample using a predictive function that has already been trained on prior samples.

Table 2: Specifications of JETSON TX2 and Pixel 3a.

Device JETSON TX2 Pixel 3a

CPU

GPU

Memory

OS

NVIDIA Denver2

+ ARM Cortex-A57

NVIDIA Pascal GPU

8GB DDR4

Ubuntu 16.04

ARM Cortex-A55(LITTLE)

+ ARM Cortex-A75(big)

Adreno 615

4GB LPDDR4X

Android 9.0 Pie

Figure 9: Overview of zTT implementation

random batch sampling from the replay memory. These procedures

are repeated until the predefined number of iterations is over.

To observe the state 𝑠 (𝑡), JETSON TX2 is programmed with

Python 3.5 to monitor its power consumption with INA3221 mod-

ule [47]
6
, temperatures,

7
, clock frequencies of CPU and GPU with

built-in sensors which are accessible through sysfs [26] in the

Linux kernel. We also monitor the clock frequencies of big.LITTLE

CPU and GPU, temperatures through sysfs in Android kernel on

Pixel 3a. We measure the power consumption of Pixel 3a by using

a Monsoon digital power monitor [27] as in Figure 8.

For our experiment on video rendering, we use OpenCV2 [28]

to measure the frame rate to learn and control application QoE.

For a 3D rendering application, we use WebGL Aquarium [15]

running on JETSON TX2 and measure the frame rate through the

JavaScript function requestAnimationFrame(), which is called

when the web browser renders every frame. For the Google Pixel

3a, we measure the frame rate of applications by collecting the

logs generated by the SurfaceFlinger [2] Android system service.

Detailed implementation settings and source code are available

online
8
.

6 EVALUATION
We experiment zTT on JETSON TX2 and Google Pixel 3a to see how

well zTT adapts to various real-world applications and environmen-

tal changes while preventing overheating and saving energy. The

details of experimented applications are summarized in Table 3.

6
Read “/sys/bus/i2c/drivers/ina3221x/[Devicelabel]/in_power_input” 100 times per

second and average them.

7
Read “/sys/devices/virtual/thermal/thermal_zone[label]/temp”

8
https://github.com/ztt-21/zTT

47

/sys/bus/i2c/drivers/ina3221x/[Device label]/in_power_input


MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

Table 3: Experimented applications and devices.

Application Description Device

Aquarium [15]

WebGL-based 3D object

rendering

JETSON TX2

YOLO [35]

Deep learning-based

object detection

JETSON TX2

Video rendering

Rendering a video with

OPENCV2

JETSON TX2

Showroom

VR [23]

WebGL-based 3D object

rendering

Pixel 3a

Skype [43] Video call Pixel 3a

Call of duty 4 [1] 3D Mobile game Pixel 3a

6.1 Evaluation Setup
For JETSON TX2, interactive and simple_ondemand governor

are used for CPU and GPU respectively, and we denote them to

default. Those governors are default governors in recent Linux

kernels and are known to reflect application loads measured from

processor usage statistics to control the CPU frequency. For the

Pixel 3a phone, schedutil, the default CPU governor from An-

droid Pie is used. The schedutil governor also controls the clock

frequency based on the processor usage statistics while utilizing the

Energy-Aware Scheduling (EAS) algorithm [3], which has been ap-

plied to the latest Android devices. EAS improves energy efficiency

by allocating adequate CPU cores (e.g., big and LITTLE) using its

CPU energy consumption model. The default governor for GPU is

msm_adreno_tz governor, which is based on ondemand governor

but focuses more on performance. These settings are default for
Pixel 3a.

Maestro [38] is a recent DVFS mechanism that aims at guaran-

teeing QoS of mobile apps under thermal constraints by preventing

thermal throttling. It proactively detects the QoS level of an applica-

tion, which is susceptible to thermal throttling. It then performs the

PI (proportional-integral) control-based DVFS with thread mapping

to meet the QoS level. Maestro is the current state-of-the-art in

thermal limit-aware DVFS mechanisms and is used for our compar-

ison.

To set the target frame rate in the default setting, the

waitKey() function of OPENCV2 was used for video rendering.

For the YOLO, we used a tiny-YOLO model which is a light-weight

version of the YOLO to meet the target frame rate of 15 fps approx-

imately. For the Aquarium benchmark, we adjusted the number of

fishes on the screen. In the case of android apps in this paper, it

aims to operate at a refresh rate of 60 Hz without any additional

settings.

6.2 Learning Application QoE
We first evaluate whether zTT can learn an application and adapt

to its performance requirements. To focus on learning applications,

we rule out the environmental effects by conducting experiments

in a heavily-cooled environment.

Figure 10 shows the FPS and power consumption for video ren-

dering by OPENCV2. We test the target FPS of 20 and 30. We

compare zTT with Maestro and default on JETSON TX2. zTT

performs very stably while minimizing power consumption by

(a) Setting target FPS at 20

(b) Setting target FPS at 30

Figure 10: Frame rate and total power consumption when
rendering a videowith different target frame rateswith suffi-
cient cooling. For comparison, Maestro and default are used
for JETSON TX2.

(a) JETSON TX2 runs each app with different target FPS (20 FPS
for Aquarium, 15 FPS for YOLO, and 30 FPS for video rendering).
zTT saves most power consumption over Maestro and default
while achieving the target FPS.

(b) Pixel 3a runs each app targeting 60 FPS,which is physically not
achievable. While minimizing FPS degradation, zTT saves more
power consumption.

Figure 11: Frame rate and total power consumption for mo-
bile apps running on JETSON TX2 and Pixel 3a.

efficiently using the CPU and GPU resources. The Maestro and

default, on the other hand, experience difficulties in utilizing the

specific resource requirements. The default scales up the clock

frequency, but it still fails in achieving 20 or 30 FPS consistently.

Maestro saves power consumption but shows instability in attain-

ing the required frame rates. We can see that zTT makes similar

performance compared to default governor with stricter perfor-

mance guarantee while saving power, on average, 37.4% and 23.9%

for the target FPS of 20 and 30, respectively.

48



zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) Showroom VR

(b) Skype (c) Call of duty 4

Figure 12: The average frame rate and CPU temperature of
zTT and Maestro in four environmental settings for each ap-
plication. zTT achieves a higher frame rate under the same
environment with higher CPU temperature within the tar-
get temperature.

We also check the performance of zTT and the others with sev-

eral real-world mobile applications requiring different target FPSes

on JETSON TX2. As shown in Figure 11 (a), zTT guarantees the

target frame rate for three applications and saves more power over

Maestro and default. After that, we slightly change the experi-

ment to know each governor’s behavior when each application sets

the target FPS very high on Pixel 3a. This experiment aims to see

how each governor behaves when the objective is not achievable

due to the platform limitation. The target FPS of three applications

is set to 60 FPS, which is not achievable on Pixel 3a. In Figure 11 (b),

compared to the others, we can see that zTT tries to meet the target

frame rate as closely as possible to minimize QoS degradation while

reducing the total power consumption as much as possible.

6.3 Learning Static Environments
We evaluate zTT with three applications (Table 3) in four different

environmental settings (i.e., normal, fan, pocket, protective case)

on the Pixel 3a device. We compare zTT with Maestro. We set the

threshold CPU temperature at 65
◦
C. In Figure 12, zTT achieves

higher FPS compared to Maestro within the CPU temperature

threshold of 65
◦
C for all cases. It indicates that zTT can more

aggressively utilize thermal budget than Maestro; it increases the
CPU clock aggressively as long as the temperature is still within

the threshold. Figure 13 shows this aggressive utilization of the

thermal budget. zTT shows higher temperature distribution than

Maestro in different environments. It reveals that zTT can learn the

environment and adaptively increase CPU or GPU frequency under

a given thermal budget to achieve higher user QoE while Maestro
shows relatively lower thermal budget utilization and QoE.

In Figure 14, we see how zTT controls the frequency of CPU and

GPU before and after learning the thermal headroom. After learning,

zTT figures out that the current policy can cause overheating and

thus lowers CPU clock frequency to stabilize the temperature below

the threshold, resulting in the reduction in power consumption by

7.5% without causing any thermal throttling.

(a) Normal (b) Fan

(c) Pocket (d) Protective case

Figure 13: The CDF of the average CPU temperature in
three applications under the same environment. zTT shows
higher CPU temperature distribution across all environ-
mental settings.

(a) Before learning thermal headroom

(b) After learning thermal headroom

Figure 14: Frequency usage and power consumption before
and after predicting thermal headroom when rendering a
video indoors (25 ◦

C). After learning the thermal headroom,
zTT lowers the CPU clock frequency to reduce power con-
sumption, thereby decreasing the steady-state temperature.

6.4 Learning Changing Environments
We verified that zTT can learn the thermal characteristics of a

static environment with application resource requirements in Sec-

tions 6.2 and 6.3. However, unlike the servers and PCs located in a

static position, mobile devices are carried to different environments.

We first evaluate the impact of transfer learning, sample copies,

and convergence on improving zTT’s adaptation speed. We then

show the experimental results from the cases with environmental

changes.

6.4.1 Transfer Learning.
Learning a new environment from zero knowledge is not only

inefficient but also degrades application QoE. To make zTT more

efficient, we use the transfer learning technique explained in Sec-

tion 4.3 that boosts the adaptation speed.We evaluated the impact of

transfer learning in reducing adaptation time on JETSON TX2. Fig-

ure 15 shows the adaption time improvement with transfer learning

49



MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

Figure 15: Adaptation time with transfer learning (no infor-
mation (random), the app alone, the environment alone, and
both app and environment).

(a) Frame rate (b) Adaptation time

Figure 16: Adaptation speeds according to the number of
sample copies. While rendering a video, we change the envi-
ronment from indoors to cooler outdoors. After adaptation,
zTT makes a new policy with higher clocks and improves
the frame rate.

with additional knowledge (i.e., the application alone, the environ-

ment alone, and both application and environment). It shows that

transfer learning reduces more than half compared to the base-

line of random sampling, indicating that the learning time reduces

significantly with additional knowledge.

6.4.2 Using Sample Copies for Faster Convergence.
Replicating specific samples in the replay memory increases sam-

ple efficiency but is known to cause overfitting due to the so-called

sample imbalance problem. Thus, we check how the number of

sample copies affects adaptation when there exist environmental

changes. For the rendering application, we vary the number of

sample copies. Figure 16 (a) shows the frame rate when the environ-

ment changes from a warm indoor to a cool outdoor environment

with the target of 35 FPS. As the number of sample copies increases,

adaptation gets faster. However, for three or more copies, we ob-

serve that overfitting causes excessive resource usage. Figure 16 (b)

shows the time when the frame rate controlled by zTT becomes

stabilized at the target of 35 FPS. As shown, even with only one

sample copy, the adaptation time reduces by half. We observe that

using one or two sample-copies makes zTT sufficiently efficient in

adapting to new environments.

6.4.3 Convergence.
DeepQ-learning is considered convergedwhen there are nomore

changes in Q-values or average reward over epochs. At such a point,

deep Q-learning is usually evaluated with average rewards [4]. In

Figure 17, we monitored the average reward for zTT over time

while rendering a video on JETSON TX2. The dotted line is the

convergence point measured at static environments with sufficient

Figure 17: Average reward by zTT with video rendering ap-
plication on JETSON TX2. Convergence points are updated
when the environment changes.

Figure 18: Frame rate and temperature of JETSON TX2 ren-
dering a video while experiencing a number of environmen-
tal changes.

training phase. After initial training, the average reward asymp-

totically converges to the dotted line. At 1000 (s), experiencing

environmental change, the average reward for the new environ-

ment follows an updated convergence point as incoming reward

changes.

6.4.4 Case Study of Environmental Changes.
We let a mobile device experience three environmental changes:

1) warm indoors (25
◦
C), 2) cool outdoors (5-7

◦
C), and 3) inside a

protective case. Figure 18 shows three environmental changes while

rendering a video in JETSON TX2. Target FPS is set to 35, and the

threshold temperature is set to 50
◦
C. When the thermal headroom

is insufficient due to environmental changes (i.e., warm indoors to

inside a protective case, or cool outdoors to warm indoors), over-

heating prevention through a cool-down action occurs around the

threshold temperature. After learning the samples obtained from

overheating prevention, zTT predicts the thermal headroom in the

new environment and creates a new policy with lower frequencies.

On the other hand, in a situation where the thermal headroom

becomes more generous (i.e., a device being inside a protective

case to cool outdoors), zTT seeks to improve the application QoE

through exploration. In such a case, if the target FPS is satisfied, a

new frequency scaling policy is created to save more power. We

can see that zTT can adapt to the new environment and utilize

resources efficiently while avoiding thermal throttlings. Figure 19

represents how aggressively the thermal budget will be used by zTT

in a periodic and extremely changing environment. An external

portable fan was periodically turned on and off at a distance of 0.8m

from JETSON TX2 to create a substantial environmental change

50



zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) The portable fan is turned off.

(b) The portable fan is turned on and off every 10 minutes.

(c) The portable fan is turned on and off every 3 minutes.

Figure 19: CDFs of CPU temperature (left) and histogram of
frame rate (right) when rendering a 60-minute video on JET-
SON TX2. The external environment changes periodically
with a portable fan.

Figure 20: Latency to decide action with zTT according to
CPU and GPU clock frequencies.

in thermal condition while rendering a 60 minutes-video targeting

35 FPS. As shown in Figure 19 (a), when the fan is off, the thermal

budget is insufficient to hit 35 FPS, but zTT overall shows higher

frame rates than Maestro. In Figure 19 (b) and (c), the portable fan

is turned on and off every 3 and 10 minutes, respectively. As the

environment changes, Maestro stays longer at lower temperatures

and cannot fully utilize the thermal budget, while zTT recognizes

the environmental change and uses the thermal budget aggressively.

Therefore, zTT achieves higher frame rates stably without being

overheated thanks to its ability to adapt to environmental changes.

6.5 Overhead
We evaluate the overhead of zTT in JETSON TX2. The average

power consumption of running the zTT algorithm ranges from 45

mW to 150 mW. Considering that the power consumption for run-

ning an app in JETSON TX2 is between 5W to 9W as in Figure 11

(a), this overhead is acceptable given its advantage in power saving.

Note that we have not applied any neural network compression

techniques to our zTT implementation meaning that there is room

for additional power saving. We also measure the time for zTT to

decide an action. As shown in Figure 20, determining an action

took about 183 ms when the GPU and CPU clock frequencies were

the lowest and about 30 ms when their clock frequencies were the

highest. Note that the real-time state parameters collected by zTT

should not change while deciding an action. If the measured temper-

ature changes while determining an action, it can confuse learning

and slow down the convergence. Since we use a 1-second average

for the state parameters such as temperature, power consumption,

and frame rate in our zTT implementation, the latency overhead of

zTT (<200ms) is practically acceptable.

7 DISCUSSION
Reducing initial learning time. Training from scratch, zTT takes

exploration steps, which can cause QoE fluctuations. In practice,

there is no need for much exploration as many samples for rep-

resentative cases can be pre-populated or collected on mobile de-

vices on the fly. Furthermore, using a pre-trained neural network,

training time also can be significantly reduced. The meta-learning

approach [12, 14] that can create a generalized neural network ap-

plicable to various environments with few samples can substantially

reduce the steps for retraining. Once mobile device manufacturers

or OS providers collect sufficient samples from users, they might

create the general neural network with meta-learning. This neural

network can easily be integrated into zTT and used as a basis for

quick adaptation. Another approach is context-based acceleration

for initial learning. Context change can be recognized using ap-

plication characteristics and various sensors such as temperature

sensors, GPS or illuminance sensors. If context change is recog-

nized, the base Q-network to be used for initial learning can be

prefetched according to the context. Thus, learning time can be

greatly reduced more than learning from scratch.

zTT formultiple concurrent applications.Mobile devices rarely

operate multiple apps concurrently in the foreground, especially

with apps with graphical output, while a PC or server can run mul-

tiple apps together. Even when background apps run, for energy-

efficiency, Android and iOS provide most computation cycles to the

foreground app while freezing or dozing apps in the background.

Therefore, even when multiple apps are running concurrently, zTT

can focus on the QoE of the app running in the foreground. When

the foreground app is switched which has already been trained,

trained Q-network can be utilized for the app. In the case of an app

that runs for the first time, it follows the transfer learning-based

approach as we discussed.

Generality. zTT requires user-defined QoE per app (e.g., 60 fps

for action game, 30 fps for video call) while the existing default

governors are application-agnostic. We believe that this is not a big

limitation for applicability, but rather a natural research direction.

For example, the latest android app developers support frame rate

setting (30 or 60 fps [10], five levels from Low to Extreme [46])

to give users choices about thermal concerns, graphics quality, or

power savings in a heuristic manner while it still overutilizes the

resources due to the nature of hardware-based DVFS. Therefore,

zTT can provide an optimized solution to app developers, which

can be packaged into multiple Q-networks when publishing apps

even with thermal freedom. Note that Q-networks for zTT are very

lightweight.

51



MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA S. Kim et al.

Table 4: Summary of the related works
QoE Thermal Processor type Environment Approach Platform

Ours FPS ✓ CPU, GPU ✓ Deep-RL Development board, Smartphone

Prakash et al. [33] FPS ✓ CPU, GPU X Q-learning Development board

Sahin et al. [38] FPS ✓ CPU X PI-control Development board

Park et al. [29] FPS X CPU, GPU X Lookup table Development board

Gupta et al. [17], Pathania

et al. [32]

FPS X CPU, GPU X Modeling-based Development board

Bhat et al. [6], Wang et

al. [49]

Execution time ✓ CPU, GPU X Modeling-based Development board

Ren et al. [36] Web loading time X CPU, GPU X Modeling-based Development board

Choi et al. [9] Frame rendering time X CPU, GPU X Modeling-based Smartphone

8 RELATEDWORK
There have been many kinds of research to manage the energy

efficiency and temperature of mobile devices considering the appli-

cation performances. We summarize the related works in Table 2.

Application-aware approach. To use CPU and GPU resources

energy-efficiently, we have to predict resource requirements of ap-

plications, but using process states such as CPU utilization is far

from the ideal. Various methods have been proposed to understand

application requirements better. Choi et al. [9] designed an over-

laid CPU/GPU governor by adjusting maximum CPU frequency

and minimum GPU frequency based on frame load prediction to

improve Android graphics pipeline and user QoE. Park et al. [29]

suggested the CPU/GPU frequency capping method to improve

game applications’ energy efficiency. It constructs a lookup table

consisting of CPU and GPU cost by training many gaming appli-

cations. Yang et al. [52] used individual user profiles to improve

energy efficiency by controlling CPU clocks and learning user ex-

perience of an application. Ren et al. [36] adjusted CPU/GPU clocks

and allocation of tasks by predicting how much and which core to

use to improve web browsing performance and energy efficiency.

DVFS with concerns on the thermal limit. Recent research ex-

plored various techniques to efficiently use resources as long as

they do not exceed a physically defined thermal limit. Bhat et al. [6]

and Gupta et al. [17] proposed a predictive thermal and power

management system by developing a model based on extensive

measurements to estimate the total power budget within the tem-

perature threshold. Prakash et al. [33] suggested a thermal model

that avoids thermal throttling while running a high-performance

game based on processor utilization and clocks, and Pathania et

al. [32] designed power and performance models for a similar pur-

pose. Sharifi et al. [40] used the physical information of processors

to build a thermal model and developed a predictive task scheduler.

Sahin et al. [38] classified applications into throttling-susceptible

continuous computations and latency-sensitive bursty tasks. Ac-

cording to the type of applications, they adopt a different policy

based on the power profile to reduce thermal throttling duration.

Wang et al. [49] proposed a framework for optimizing the execution

time of collaborative CPU-GPU computingwith thermal constraints

based on the predictive models. However, there are no studies that

attempt to predict future temperature budgets in consideration of

various environments.

RL for power and thermal management. Mobile devices are

prone to temporal and spatial variations of environments. This

uncertainty makes power and thermal control more complicated.

RL can be a potential tool for solving this complex problem. Iranfar

et al. [19] proposed a Q-learning based power and thermal man-

agement algorithm for frequency scaling and thread allocation

by limiting state-action space. Gupta et al. [18] proposed a Deep

Q-learning methodology to optimize the power management in

dynamically changing workloads at runtime. Carvalho et al. [41]

presented a Q-learning based online power management method

that does not require any prior knowledge of workload. Still, no

work uses DRL on mobile devices to address both environmental

changes and application QoE.

9 CONCLUSIONS
As mobile devices evolve for high-performance tasks, energy ef-

ficiency and thermal management become more critical. This pa-

per formulated a trade-off problem between power consumption

and application performance with hard constraints on the ther-

mal threshold. We found that this formulation is challenging to

be solved with a single approximate model due to diverse applica-

tion performance requirements and varying environments affecting

thermal conditions. We tackle this challenge in an adaptive and pre-

dictive manner by proposing a deep reinforcement learning-based

dynamic frequency scaling algorithm, zTT. zTT learns application

requirements and thermal characteristics of environments using

samples collected in real-time and improves energy efficiency while

preventing overheating. We verified that zTT works successfully in

static and dynamic environments with various applications running

on NVIDIA JETSON TX2 and Pixel 3a devices.

ACKNOWLEDGMENTS
This research was supported in part by Samsung Research Funding

& Incubation Center of Samsung Electronics (SRFC-TD2003-01)

and the Engineering Research Center Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Korean

Government MSIT (NRF-2018R1A5A1059921). Kyunghan Lee is the

corresponding author of this work.

REFERENCES
[1] Activision Publishing, Inc., Tencent Games Co., Ltd. Call of duty: Mobile.

https://www.callofduty.com/mobile, 2019.

[2] Android. SurfaceFlinger. https://source.android.com/devices/graphics/

surfaceflinger-windowmanager, 2020.

[3] ARMDeveloper Community,Quentin Perret. EnergyAware Scheduling (EAS)

in Linux 5.0. https://community.arm.com/developer/ip-products/processors/b/

processors-ip-blog/posts/energy-aware-scheduling-in-linux, 2019.

52

https://www.callofduty.com/mobile
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/energy-aware-scheduling-in-linux
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/energy-aware-scheduling-in-linux


zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

[4] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research 47 (2013), 253–279.

[5] Bhat, G., Gumussoy, S., and Ogras, U. Y. Power and thermal analysis of com-

mercial mobile platforms: Experiments and case studies. In Proceedings of IEEE
Design, Automation & Test in Europe Conference & Exhibition (2019), pp. 144–149.

[6] Bhat, G., Singla, G., Unver, A. K., and Ogras, U. Y. Algorithmic optimization

of thermal and power management for heterogeneous mobile platforms. IEEE
Transactions on Very Large Scale Integration Systems 26, 3 (2017), 544–557.

[7] Brodowski, D., and Golde, N. Linux cpufreq governors.

[8] Chen, Z., Stamoulis, D., and Marculescu, D. Profit: priority and

power/performance optimization for many-core systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37, 10 (2017), 2064–
2075.

[9] Choi, Y., Park, S., and Cha, H. Graphics-aware power governing for mobile

devices. In Proceedings of ACM International Conference on Mobile Systems,
Applications, and Services (2019), pp. 469–481.

[10] Corporation, D. Cookie run : Kingdom, 2021.

[11] Dinakarrao, S. M. P., Joseph, A., Haridass, A., Shafiqe, M., Henkel, J., and

Homayoun, H. Application and thermal-reliability-aware reinforcement learning

based multi-core power management. ACM Journal on Emerging Technologies in
Computing Systems 15, 4 (2019), 33.

[12] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast

adaptation of deep networks. arXiv preprint arXiv:1703.03400 (2017).
[13] Gong, F., Ju, L., Zhang, D., Zhao, M., and Jia, Z. Cooperative dvfs for energy-

efficient hevc decoding on embedded cpu-gpu architecture. In Proceedings of
Design Automation Conference (2017), pp. 1–6.

[14] Gong, T., Kim, Y., Shin, J., and Lee, S.-J. Metasense: few-shot adaptation to

untrained conditions in deep mobile sensing. In Proceedings of ACM Conference
on Embedded Networked Sensor Systems (2019), pp. 110–123.

[15] Google. WebGL Aquarium. http://webglsamples.org/aquarium/aquarium.html,

2009.

[16] Gulli, A., and Pal, S. Deep learning with Keras. Packt Publishing, 2017.
[17] Gupta, U., Ayoub, R., Kishinevsky, M., Kadjo, D., Soundararajan, N., Tursun,

U., and Ogras, U. Y. Dynamic power budgeting for mobile systems running

graphics workloads. IEEE Transactions on Multi-Scale Computing Systems 4, 1
(2017), 30–40.

[18] Gupta, U., Mandal, S. K., Mao, M., Chakrabarti, C., and Ogras, U. Y. A deep

q-learning approach for dynamic management of heterogeneous processors. IEEE
Computer Architecture Letters 18, 1 (2019), 14–17.

[19] Iranfar, A., Shahsavani, S. N., Kamal, M., and Afzali-Kusha, A. A heuris-

tic machine learning-based algorithm for power and thermal management of

heterogeneous mpsocs. In Proceedings of IEEE/ACM International Symposium on
Low Power Electronics and Design) (2015), pp. 291–296.

[20] Isuwa, S., Dey, S., Singh, A. K., andMcDonald-Maier, K. Teem: Online thermal-

and energy-efficiency management on cpu-gpu mpsocs. In Proceedings of IEEE
Design, Automation & Test in Europe Conference & Exhibition (2019), pp. 438–443.

[21] Kadjo, D., Ayoub, R., Kishinevsky, M., and Gratz, P. V. A control-theoretic ap-

proach for energy efficient cpu-gpu subsystem in mobile platforms. In Proceedings
of Design Automation Conference (2015), p. 62.

[22] Kang, S., Choi, H., Park, S., Park, C., Lee, J., Lee, U., and Lee, S.-J. Fire in

your hands: Understanding thermal behavior of smartphones. In Proceedings
of ACM International Conference on Mobile Computing and Networking (2019),

pp. 13:1–13:16.

[23] Little Workshop. WebVR Showroom. https://showroom.littleworkshop.fr/,

2017.

[24] Mei, X., Wang, Q., and Chu, X. A survey and measurement study of gpu dvfs on

energy conservation. Digital Communications and Networks 3, 2 (2017), 89–100.
[25] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level

control through deep reinforcement learning. Nature 518, 7540 (2015), 529.
[26] Mochel, P. The sysfs filesystem.

[27] Monsoon-solutions. High Voltage Power Monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/, 2019.

[28] opencv dev team. Opencv2.4 documentation. OPENCV2.4.https://docs.opencv.

org/2.4.13.6, 2019.

[29] Park, J.-G., Hsieh, C.-Y., Dutt, N., and Lim, S.-S. Synergistic cpu-gpu frequency

capping for energy-efficient mobile games. ACM Transactions on Embedded
Computing Systems 17, 2 (2018), 45:1–45:23.

[30] Paterna, F., and Rosing, T. Š. Modeling and mitigation of extra-soc thermal

coupling effects and heat transfer variations in mobile devices. In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (2015), pp. 831–838.

[31] Paterna, F., and Rosing, T. v. Modeling and mitigation of extra-soc thermal

coupling effects and heat transfer variations in mobile devices. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design (2015), pp. 831–
838.

[32] Pathania, A., Irimiea, A. E., Prakash, A., and Mitra, T. Power-performance

modelling of mobile gaming workloads on heterogeneous mpsocs. In Proceedings
of Design Automation Conference (2015), pp. 1–6.

[33] Prakash, A., Amrouch, H., Shafiqe, M., Mitra, T., and Henkel, J. Improving

mobile gaming performance through cooperative cpu-gpu thermal management.

In Proceedings of Design Automation Conference (2016), p. 47.
[34] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only look once:

Unified, real-time object detection. In Proceedings of IEEE conference on computer
vision and pattern recognition (2016), pp. 779–788.

[35] Redmon, J., and Farhadi, A. Yolov3: An incremental improvement. arXiv (2018).
[36] Ren, J., Wang, X., Fang, J., Feng, Y., Zhu, D., Luo, Z., Zheng, J., and Wang, Z.

Proteus: network-aware web browsing on heterogeneous mobile systems. In

Proceedings of ACM International Conference on emerging Networking EXperiments
and Technologies (2018), pp. 379–392.

[37] Sahin, O., and Coskun, A. K. Providing sustainable performance in thermally

constrained mobile devices. In Proceedings of ACM/IEEE Symposium on Embedded
Systems for Real-Time Multimedia (2016), pp. 72–77.

[38] Sahin, O., Thiele, L., and Coskun, A. K. Maestro: Autonomous qos management

for mobile applications under thermal constraints. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 38, 8 (2018), 1557–1570.

[39] Sekar, K. Power and thermal challenges in mobile devices. In Proceedings of ACM
International Conference on Mobile Computing & Networking (2013), pp. 363–368.

[40] Sharifi, S., Krishnaswamy, D., and Rosing, T. Š. Prometheus: A proactive

method for thermal management of heterogeneous mpsocs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32, 7 (2013), 1110–1123.

[41] Shen, H., Tan, Y., Lu, J., Wu, Q., and Qiu, Q. Achieving autonomous power man-

agement using reinforcement learning. ACM Transactions on Design Automation
of Electronic Systems 18, 2 (2013), 1–32.

[42] Singla, G., Kaur, G., Unver, A. K., and Ogras, U. Y. Predictive dynamic thermal

and power management for heterogeneous mobile platforms. In Proceedings
of IEEE Design, Automation & Test in Europe Conference & Exhibition (2015),

pp. 960–965.

[43] Skype Inc. Skype. https://skype.com/, 2003.

[44] Suh, H., Shahriaree, N., Hekler, E. B., and Kientz, J. A. Developing and

validating the user burden scale: A tool for assessing user burden in computing

systems. In Proceedings of ACM CHI conference on human factors in computing
systems (2016), pp. 3988–3999.

[45] Tan, Y., Liu, W., and Qiu, Q. Adaptive power management using reinforcement

learning. In Proceedings of IEEE/ACM International Conference on Computer-Aided
Design-Digest of Technical Papers (2009), pp. 461–467.

[46] Tencent. Pubg mobile, 2018.

[47] Texas Instruments. High-side measurement, shunt and bus voltage monitor

with i2c- and smbus-compatible interface. https://www.ti.com/product/INA3221,

2016.

[48] Walker, M. J., Diestelhorst, S., Hansson, A., Das, A. K., Yang, S., Al-Hashimi,

B. M., and Merrett, G. V. Accurate and stable run-time power modeling for

mobile and embedded cpus. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 36, 1 (2016), 106–119.

[49] Wang, S., Ananthanarayanan, G., and Mitra, T. Optic: Optimizing collab-

orative cpu–gpu computing on mobile devices with thermal constraints. IEEE
transactions on computer-aided design of integrated circuits and systems 38, 3 (2018),
393–406.

[50] Xie, Q., Kim, J., Wang, Y., Shin, D., Chang, N., and Pedram, M. Dynamic thermal

management in mobile devices considering the thermal coupling between battery

and application processor. In Proceedings of IEEE/ACM International Conference
on Computer-Aided Design (2013), pp. 242–247.

[51] Yan, K., Zhang, X., Tan, J., and Fu, X. Redefining qos and customizing the

power management policy to satisfy individual mobile users. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (2016), pp. 1–12.

[52] Yang, L., Dick, R. P., Memik, G., and Dinda, P. Happe: Human and application-

driven frequency scaling for processor power efficiency. IEEE Transactions on
Mobile Computing 12, 8 (2012), 1546–1557.

[53] Zhang, Q., Lin, M., Yang, L. T., Chen, Z., and Li, P. Energy-efficient scheduling

for real-time systems based on deep q-learning model. IEEE Transactions on
Sustainable Computing 4, 1 (2017), 132–141.

53

 http://webglsamples.org/aquarium/aquarium.html
https://showroom.littleworkshop.fr/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
OPENCV2.4. https://docs.opencv.org/2.4.13.6
OPENCV2.4. https://docs.opencv.org/2.4.13.6
https://skype.com/
https://www.ti.com/product/INA3221

	Abstract
	1 Introduction
	2 Background
	2.1 CPU and GPU DVFS Techniques
	2.2 Thermal Issues on Mobile Devices

	3 Observation
	3.1 Inefficiency of Existing DVFS Schemes
	3.2 Thermal Characteristics

	4 zTT Design
	4.1 Problem Formulation
	4.2 State, Action and Reward Design
	4.3 Providing Adaptability to DQN

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Learning Application QoE
	6.3 Learning Static Environments
	6.4 Learning Changing Environments
	6.5 Overhead

	7 Discussion
	8 Related work
	9 Conclusions
	Acknowledgments
	References

